Abstract

We report a hollow-core photonic crystal fiber that is engineered so as to strongly suppress higher-order modes, i.e., to provide robust LP01 single-mode guidance in all the wavelength ranges where the fiber guides with low loss. Encircling the core is a single ring of nontouching glass elements whose modes are tailored to ensure resonant phase-matched coupling to higher-order core modes. We show that the resulting modal filtering effect depends on only one dimensionless shape parameter, akin to the well-known d/Λ parameter for endlessly single-mode solid-core PCF. Fabricated fibers show higher-order mode losses some 100 higher than for the LP01 mode, with LP01 losses <0.2  dB/m in the near-infrared and a spectral flatness 1  dB over a >110  THz bandwidth.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Higher-order mode suppression in twisted single-ring hollow-core photonic crystal fibers

N. N. Edavalath, M. C. Günendi, R. Beravat, G. K. L. Wong, M. H. Frosz, J.-M. Ménard, and P. St.J. Russell
Opt. Lett. 42(11) 2074-2077 (2017)

Selective excitation of higher order modes in hollow-core PCF via prism-coupling

Barbara M. Trabold, David Novoa, Amir Abdolvand, and Philip St.J. Russell
Opt. Lett. 39(13) 3736-3739 (2014)

Raman amplification of pure side-seeded higher-order modes in hydrogen-filled hollow-core PCF

Jean-Michel Ménard, Barbara M. Trabold, Amir Abdolvand, and Philip St.J. Russell
Opt. Express 23(2) 895-901 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. St.J. Russell, and B. J. Mangan, Opt. Express 12, 717 (2004).
    [Crossref]
  2. P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
    [Crossref]
  3. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, Opt. Express 12, 4080 (2004).
    [Crossref]
  4. A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, Chem. Soc. Rev. 42, 8629 (2013).
    [Crossref]
  5. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, Opt. Express 11, 1243 (2003).
    [Crossref]
  6. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, Science 298, 399 (2002).
    [Crossref]
  7. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, Opt. Express 19, 1441 (2011).
    [Crossref]
  8. W. Belardi and J. C. Knight, Opt. Express 22, 10091 (2014).
    [Crossref]
  9. A. Hartung, J. Kobelke, A. Schwuchow, J. Bierlich, J. Popp, M. A. Schmidt, and T. Frosch, Opt. Lett. 40, 3432 (2015).
    [Crossref]
  10. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, Opt. Express 21, 9514 (2013).
  11. F. Yu, W. J. Wadsworth, and J. C. Knight, Opt. Express 20, 11153 (2012).
    [Crossref]
  12. T. A. Birks, J. C. Knight, and P. St.J. Russell, Opt. Lett. 22, 961 (1997).
    [Crossref]
  13. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St.J. Russell, Opt. Express 16, 17972 (2008).
    [Crossref]
  14. F. Poletti, Opt. Express 22, 23807 (2014).
    [Crossref]
  15. C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, Opt. Express 23, 15824 (2015).
    [Crossref]
  16. J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. DeSantolo, and F. V. DiMarcello, Opt. Express 21, 6233 (2013).
    [Crossref]
  17. F. Poletti, J. R. Hayes, and D. J. Richardson, 37th European Conference and Exposition on Optical Communications (Optical Society of America, 2011).
  18. M. C. Günendi, P. Uebel, M. H. Frosz, and P. St.J. Russell, arXiv:1508.06747 [physics.optics] (2015).
  19. E. A. J. Marcatili and R. A. Schmelzter, Bell Syst. Tech. J. 43, 1783 (1964).
    [Crossref]
  20. N. N. Edavalath, M. H. Frosz, J.-M. Ménard, and P. St.J. Russell, Frontiers on Optics (Optical Society of America, 2015).
  21. J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
    [Crossref]
  22. B. M. Trabold, D. Novoa, A. Abdolvand, and P. St.J. Russell, Opt. Lett. 39, 3736 (2014).
    [Crossref]

2015 (2)

2014 (4)

2013 (3)

2012 (1)

2011 (1)

2008 (1)

2004 (2)

2003 (1)

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, Science 298, 399 (2002).
[Crossref]

1997 (1)

1993 (1)

J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[Crossref]

1964 (1)

E. A. J. Marcatili and R. A. Schmelzter, Bell Syst. Tech. J. 43, 1783 (1964).
[Crossref]

Abdolvand, A.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, Science 298, 399 (2002).
[Crossref]

Archambault, J.-L.

J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[Crossref]

Belardi, W.

Benabid, F.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, Science 298, 399 (2002).
[Crossref]

Bierlich, J.

Biriukov, A. S.

Birks, T. A.

Black, R. J.

J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[Crossref]

Bouwmans, G.

Bures, J.

J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[Crossref]

Chang, W.

P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

Chen, J. S. Y.

Chenard, F.

Cubillas, A. M.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, Chem. Soc. Rev. 42, 8629 (2013).
[Crossref]

de Sterke, C. M.

DeSantolo, A.

Dianov, E. M.

DiMarcello, F. V.

Dunn, S. C.

Edavalath, N. N.

N. N. Edavalath, M. H. Frosz, J.-M. Ménard, and P. St.J. Russell, Frontiers on Optics (Optical Society of America, 2015).

Eggleton, B. J.

Etzold, B. J. M.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, Chem. Soc. Rev. 42, 8629 (2013).
[Crossref]

Euser, T. G.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, Chem. Soc. Rev. 42, 8629 (2013).
[Crossref]

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St.J. Russell, Opt. Express 16, 17972 (2008).
[Crossref]

Fini, J. M.

Frosch, T.

Frosz, M. H.

M. C. Günendi, P. Uebel, M. H. Frosz, and P. St.J. Russell, arXiv:1508.06747 [physics.optics] (2015).

N. N. Edavalath, M. H. Frosz, J.-M. Ménard, and P. St.J. Russell, Frontiers on Optics (Optical Society of America, 2015).

Günendi, M. C.

M. C. Günendi, P. Uebel, M. H. Frosz, and P. St.J. Russell, arXiv:1508.06747 [physics.optics] (2015).

Hand, D. P.

Hansen, T. P.

Hartung, A.

Hayes, J. R.

F. Poletti, J. R. Hayes, and D. J. Richardson, 37th European Conference and Exposition on Optical Communications (Optical Society of America, 2011).

Hölzer, P.

P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

Hu, J.

Jones, A. C.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, Chem. Soc. Rev. 42, 8629 (2013).
[Crossref]

Jones, J. D. C.

Kaminski, C. F.

Knight, J. C.

Kobelke, J.

Kolyadin, A. N.

Kosolapov, A. F.

Kuis, R. A.

Lacroix, S.

J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[Crossref]

Litchinitser, N. M.

Ludvigsen, H.

Mangan, B.

Mangan, B. J.

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmelzter, Bell Syst. Tech. J. 43, 1783 (1964).
[Crossref]

McPhedran, R. C.

Ménard, J.-M.

N. N. Edavalath, M. H. Frosz, J.-M. Ménard, and P. St.J. Russell, Frontiers on Optics (Optical Society of America, 2015).

Meng, L.

Menyuk, C. R.

Monberg, E. M.

Nicholson, J. W.

Nold, J.

Novoa, D.

Petersen, J. C.

Plotnichenko, V. G.

Poletti, F.

F. Poletti, Opt. Express 22, 23807 (2014).
[Crossref]

F. Poletti, J. R. Hayes, and D. J. Richardson, 37th European Conference and Exposition on Optical Communications (Optical Society of America, 2011).

Popp, J.

Pryamikov, A. D.

Richardson, D. J.

F. Poletti, J. R. Hayes, and D. J. Richardson, 37th European Conference and Exposition on Optical Communications (Optical Society of America, 2011).

Ritari, T.

Russell, P. St.J.

B. M. Trabold, D. Novoa, A. Abdolvand, and P. St.J. Russell, Opt. Lett. 39, 3736 (2014).
[Crossref]

P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, Chem. Soc. Rev. 42, 8629 (2013).
[Crossref]

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St.J. Russell, Opt. Express 16, 17972 (2008).
[Crossref]

J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. St.J. Russell, and B. J. Mangan, Opt. Express 12, 717 (2004).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, Science 298, 399 (2002).
[Crossref]

T. A. Birks, J. C. Knight, and P. St.J. Russell, Opt. Lett. 22, 961 (1997).
[Crossref]

M. C. Günendi, P. Uebel, M. H. Frosz, and P. St.J. Russell, arXiv:1508.06747 [physics.optics] (2015).

N. N. Edavalath, M. H. Frosz, J.-M. Ménard, and P. St.J. Russell, Frontiers on Optics (Optical Society of America, 2015).

Sadler, P. J.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, Chem. Soc. Rev. 42, 8629 (2013).
[Crossref]

Scharrer, M.

Schmelzter, R. A.

E. A. J. Marcatili and R. A. Schmelzter, Bell Syst. Tech. J. 43, 1783 (1964).
[Crossref]

Schmidt, M. A.

Schwuchow, A.

Semjonov, S. L.

Shephard, J. D.

Simonsen, H. R.

Sørensen, T.

Trabold, B. M.

Travers, J. C.

P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

Tuominen, J.

Uebel, P.

M. C. Günendi, P. Uebel, M. H. Frosz, and P. St.J. Russell, arXiv:1508.06747 [physics.optics] (2015).

Unterkofler, S.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, Chem. Soc. Rev. 42, 8629 (2013).
[Crossref]

Usner, B.

Wadsworth, W. J.

Wasserscheid, P.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, Chem. Soc. Rev. 42, 8629 (2013).
[Crossref]

Wei, C.

White, T. P.

Whyte, G.

Windeler, R. S.

Yu, F.

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmelzter, Bell Syst. Tech. J. 43, 1783 (1964).
[Crossref]

Chem. Soc. Rev. (1)

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, Chem. Soc. Rev. 42, 8629 (2013).
[Crossref]

J. Lightwave Technol. (1)

J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[Crossref]

Nat. Photonics (1)

P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

Opt. Express (11)

Opt. Lett. (3)

Science (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, Science 298, 399 (2002).
[Crossref]

Other (3)

F. Poletti, J. R. Hayes, and D. J. Richardson, 37th European Conference and Exposition on Optical Communications (Optical Society of America, 2011).

M. C. Günendi, P. Uebel, M. H. Frosz, and P. St.J. Russell, arXiv:1508.06747 [physics.optics] (2015).

N. N. Edavalath, M. H. Frosz, J.-M. Ménard, and P. St.J. Russell, Frontiers on Optics (Optical Society of America, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Sketch of the structure, with the key dimensions marked in core diameter D, inner ARE diameter d, and wall thickness t. (b) Fundamental LP01 mode is strongly confined, being antiresonant with modes in the ARE capillaries. (c) Higher-order modes, e.g., the illustrated LP11 mode, experience high loss because they are phase-matched to resonances in the AREs. Core light leaks out through the AREs into the solid glass sheath (indicated by the blue arrows). For optimal HOM suppression, d/D=0.68.
Fig. 2.
Fig. 2. (a) Modal refractive indices of the LP01 (orange) and even and odd LP11 (blue) modes. (b) Modal losses and FOM11 (green). The brown dashed curves in each plot refer to the ARE01 mode of an isolated ARE capillary. The geometrical parameters are t/D=0.01 and D/λ=20. The gray-shaded area in (b) shows the region where FOM11>20. (c) Analytical model. Modal indices of the LP11 (grey) and ARE01 (purple) modes, calculated using the fit in Eq. (1), assuming isolated thick-walled capillaries in each case. Also plotted are the numerically evaluated indices of the hybrid LP11/ARE01 modes for the same parameters as Fig. 2(a) [closeup of the gray rectangle]. (d) Infinitely thick-walled capillaries used to approximate the core and AREs in the analytical model [see Eqs. (1) and (2)].
Fig. 3.
Fig. 3. (a) Transmission of the LP01 mode (normalized to the SC spectrum) through a straight 59 cm length of hESM fiber. The vertical dashed lines mark the calculated positions of the first- and second- order resonances at 0.92 and 0.46 μm [see Eq. (3)], and the inset shows an SEM of the hESM-PCF, with parameters D=30  μm, d/D=0.64, and t=0.44  μm. The scale bar corresponds to 25 μm. (b) Measured attenuation through a 53 m long fiber piece, coiled on a spool with 7.5 cm radius. The shaded regions indicate the standard error. (c) Optical near-field images at 1.55 μm (D/λ19) for different lateral in-coupling positions; the numbers in parentheses indicate the two-axis transverse displacement in μm.
Fig. 4.
Fig. 4. (a) Optical near-field images at 1.33 μm (D/λ23) for the six lowest-order HOMs, obtained using prism coupling into a 6 cm long hESM-PCF [identical fiber to that used in Fig. 3(a)]. Note the expected coupling between ARE01 and LP11 modes. (b), (c) FOMlm (red and green squares) at (b) 1.330 μm and (c) 1.064 μm (D/λ28). The LP01 mode loss is (b) 0.46±0.04  dB/m and (c) 2.21±0.02  dB/m, and the bars show the standard error in the FOM values. In (b) the violet triangles show the FOMlm of a kagomé-PCF with D/λ=26 [22]. In (c) the blue circles indicate the FOMlm of an ARR-PCF with d/D=0.53 and D/λ=41 [20].

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

nlm=1(ulmπf)2(λdi)2,
dD=u01u11fcofARE=0.682.
λq2tqng21,

Metrics