Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Lab-on-fiber electrophoretic trace mixture separating and detecting an optofluidic device based on a microstructured optical fiber

Not Accessible

Your library or personal account may give you access

Abstract

We report an in-fiber integrated electrophoretic trace mixture separating and detecting an optofluidic optical fiber sensor based on a specially designed optical fiber. In this design, rapid in situ separation and simultaneous detection of mixed analytes can be realized under electro-osmotic flow in the microstructured optical fiber. To visually display the in-fiber separating and detecting process, two common fluorescent indicators are adopted as the optofluidic analytes in the optical fiber. Results show that a trace amount of the mixture (0.15 μL) can be completely separated within 3.5 min under a high voltage of 5 kV. Simultaneously, the distributed information of the separated analytes in the optical fiber can be clearly obtained by scanning along the optical fiber using a 355 nm laser. The emission from the analytes can be efficiently coupled into the inner core and guides to the remote end of the optical fiber. In addition, the thin cladding around the inner core in the optical fiber can prevent the fluorescent cross talk between the analytes in this design. Compared to previous optical fiber optofluidic devices, this device first realizes simultaneously separating treatment and the detection of the mixed samples in an optical fiber. Significantly, such an in-fiber integrated separating and detecting optofluidic device can find wide applications in various analysis fields involves mixed samples, such as biology, chemistry, and environment.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Optofluidic in-fiber integrated surface-enhanced Raman spectroscopy detection based on a hollow optical fiber with a suspended core

Danheng Gao, Xinghua Yang, Pingping Teng, Zhihai Liu, Jun Yang, Depeng Kong, Jianzhong Zhang, Meng Luo, Zhanao Li, Fengjun Tian, and Libo Yuan
Opt. Lett. 44(21) 5173-5176 (2019)

In-fiber integrated chemiluminiscence online optical fiber sensor

Xinghua Yang, Tingting Yuan, Jun Yang, Biao Dong, Yanxin Liu, Yao Zheng, and Libo Yuan
Opt. Lett. 38(17) 3433-3436 (2013)

In-fiber optofluidic online SERS detection of trace uremia toxin

Danheng Gao, Xinghua Yang, Pingping Teng, Meng Luo, Haoxin Zhang, Zhihai Liu, Jun Yang, Zhanao Li, Xingyue Wen, Libo Yuan, Kang Li, Mark Bowkett, and Nigel Copner
Opt. Lett. 46(5) 1101-1104 (2021)

Supplementary Material (1)

NameDescription
Visualization 1: MOV (1152 KB)      Separating process of trace amount of mixture in microstructured optical fiber.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.