Abstract

Foveated imaging, such as that evolved by biological systems to provide high angular resolution with a reduced space–bandwidth product, also offers advantages for man-made task-specific imaging. Foveated imaging systems using exclusively optical distortion are complex, bulky, and high cost, however. We demonstrate foveated imaging using a planar array of identical cameras combined with a prism array and superresolution reconstruction of a mosaicked image with a foveal variation in angular resolution of 5.9:1 and a quadrupling of the field of view. The combination of low-cost, mass-produced cameras and optics with computational image recovery offers enhanced capability of achieving large foveal ratios from compact, low-cost imaging systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual-sensor foveated imaging system

Hong Hua and Sheng Liu
Appl. Opt. 47(3) 317-327 (2008)

Superimposed multi-resolution imaging

Guillem Carles, James Babington, Andrew Wood, Jason F. Ralph, and Andrew R. Harvey
Opt. Express 25(26) 33043-33055 (2017)

Compact multi-aperture imaging with high angular resolution

Guillem Carles, Gonzalo Muyo, Nicholas Bustin, Andrew Wood, and Andrew R. Harvey
J. Opt. Soc. Am. A 32(3) 411-419 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. Belay, H. Ottevaere, Y. Meuret, M. Vervaeke, J. Van Erps, and H. Thienpont, Appl. Opt. 52, 6081 (2013).
    [Crossref]
  2. Y. Qin, H. Hua, and M. Nguyen, Opt. Lett. 38, 2191 (2013).
    [Crossref]
  3. H. Hua and S. Liu, Appl. Opt. 47, 317 (2008).
    [Crossref]
  4. A. Ude, C. Gaskett, and G. Cheng, Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2006), p. 3457.
  5. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, Opt. Express 17, 7873 (2009).
    [Crossref]
  6. B. Potsaid, Y. Bellouard, and J. T. Wen, Opt. Express 13, 6504 (2005).
    [Crossref]
  7. G. Carles, J. Downing, and A. R. Harvey, Opt. Lett. 39, 1889 (2014).
    [Crossref]
  8. N. Hagen and T. S. Tkaczyk, Appl. Opt. 50, 4998 (2011).
    [Crossref]
  9. G. Wong, R. Pilkington, and A. R. Harvey, Opt. Lett. 36, 1332 (2011).
    [Crossref]
  10. D. G. Lowe, Int. J. Comput. Vis. 60, 91 (2004).
    [Crossref]
  11. G. Carles, G. Muyo, N. Bustin, A. Wood, and A. R. Harvey, J. Opt. Soc. Am. A 32, 411 (2015).
    [Crossref]

2015 (1)

2014 (1)

2013 (2)

2011 (2)

2009 (1)

2008 (1)

2005 (1)

2004 (1)

D. G. Lowe, Int. J. Comput. Vis. 60, 91 (2004).
[Crossref]

Alexandrov, S. A.

Belay, G.

Bellouard, Y.

Bustin, N.

Carles, G.

Cheng, G.

A. Ude, C. Gaskett, and G. Cheng, Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2006), p. 3457.

Downing, J.

Gaskett, C.

A. Ude, C. Gaskett, and G. Cheng, Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2006), p. 3457.

Gutzler, T.

Hagen, N.

Harvey, A. R.

Hillman, T. R.

Hua, H.

Liu, S.

Lowe, D. G.

D. G. Lowe, Int. J. Comput. Vis. 60, 91 (2004).
[Crossref]

Meuret, Y.

Muyo, G.

Nguyen, M.

Ottevaere, H.

Pilkington, R.

Potsaid, B.

Qin, Y.

Sampson, D. D.

Thienpont, H.

Tkaczyk, T. S.

Ude, A.

A. Ude, C. Gaskett, and G. Cheng, Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2006), p. 3457.

Van Erps, J.

Vervaeke, M.

Wen, J. T.

Wong, G.

Wood, A.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Principle of multi-aperture foveated imaging approach, (b), (c) layout of the camera and prism arrays, respectively, and (d) photograph of the assembled device. Only two types of prisms are used, highlighted by green and red in (b) and shown in (c); arrows in (b) indicate the direction of each prism slope.
Fig. 2.
Fig. 2. FOV enhancement from 51 ° × 39 ° to 100 ° × 80 ° . The black lines indicate the selected prism angle θ = 16 ° that achieves ϕ I = 50 ° and ϕ I = 40 ° for the horizontal and vertical directions. Right-graphs illustrate the modification of the FOV.
Fig. 3.
Fig. 3. Imaging parameters obtained from ray tracing: (a) intensity shading at the sensor plane obtained by tracing rays that sample the angular object space (relative intensity is color coded, and green lines enclose the pixels that contribute to the global FOV), (b) FOV covered by selected cameras, and (c) maximum sampling rate of the system.
Fig. 4.
Fig. 4. (a), (b) Recorded images by central and edge cameras. (c) Reconstructed image (dashed lines show the coverage of each camera). (d) Close-ups of the arrow-highlighted regions in (c) as recorded images in upper row (cropped to approximately match the size) and reconstructed images in lower row.
Fig. 5.
Fig. 5. Angular resolution as recorded [from Fig. 3(c)] and reconstructed Nyquist rates. The dots are resolution measures performed at edges highlighted by yellow circles in Fig. [4(c)].

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sin ( ϕ I + θ ) = n sin ( arcsin ( sin ( ϕ O ) n ) + θ ) ,

Metrics