Abstract

We study the use of frequency modulated lasers in interferometric optical gyroscopes and show that by exploiting various frequency modulation signals, the laser coherence can be controlled. We show that both angle random walk and bias stability of an interferometric optical gyroscope based on laser sources can be improved with this technique.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Integrated optical driver for interferometric optical gyroscopes

Minh A. Tran, Tin Komljenovic, Jared C. Hulme, MJ Kennedy, Daniel J. Blumenthal, and John E. Bowers
Opt. Express 25(4) 3826-3840 (2017)

A multi-frequency signal processing method for fiber-optic gyroscopes with square wave modulation

Yongxiao Li, Zinan Wang, Yi Yang, Chao Peng, Zhenrong Zhang, and Zhengbin Li
Opt. Express 22(2) 1608-1618 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. Culshaw, Meas. Sci. Technol. 17, R1 (2006).
    [Crossref]
  2. V. Vali and R. W. Shorthill, Appl. Opt. 15, 1099 (1976).
    [Crossref]
  3. H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 2014).
  4. J. Nayak, Appl. Opt. 50, E152 (2011).
    [Crossref]
  5. S. W. Lloyd, S. Fan, and M. J. F. Digonnet, J. Lightwave Technol. 31, 2079 (2013).
    [Crossref]
  6. C. C. Cutler, S. A. Newton, and H. J. Shaw, Opt. Lett. 5, 488 (1980).
    [Crossref]
  7. B. Culshaw and I. P. Giles, IEEE Trans. Microwave Theory Tech. 30, 536 (1982).
  8. S. Blin, M. J. F. Digonnet, and G. S. Kino, Proc. SPIE 7004, 70044X (2008).
    [Crossref]
  9. J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, Opt. Express 21, 544 (2013).
    [Crossref]
  10. S. Srinivasan, R. Moreira, D. Blumenthal, and J. E. Bowers, Opt. Express 22, 24988 (2014).
    [Crossref]
  11. J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, and J. E. Bowers, IEEE Photon. J. 5, 6600207 (2013).
    [Crossref]
  12. S. Gundavarapu, T. Huffman, R. Moreira, M. Belt, J. E. Bowers, and D. J. Blumenthal, Optical Fiber Communication Conference (2016), paper W4E.5.
  13. M.-C. Tien, T. Mizumoto, P. Pintus, H. Kroemer, and J. Bowers, Opt. Express 19, 11740 (2011).
    [Crossref]
  14. J. E. Bowers, R. S. Tucker, and C. A. Burrus, IEEE J. Quantum Electron. 20, 1230 (1984).
    [Crossref]

2014 (1)

2013 (3)

2011 (2)

2008 (1)

S. Blin, M. J. F. Digonnet, and G. S. Kino, Proc. SPIE 7004, 70044X (2008).
[Crossref]

2006 (1)

B. Culshaw, Meas. Sci. Technol. 17, R1 (2006).
[Crossref]

1984 (1)

J. E. Bowers, R. S. Tucker, and C. A. Burrus, IEEE J. Quantum Electron. 20, 1230 (1984).
[Crossref]

1982 (1)

B. Culshaw and I. P. Giles, IEEE Trans. Microwave Theory Tech. 30, 536 (1982).

1980 (1)

1976 (1)

Barton, J. S.

J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, and J. E. Bowers, IEEE Photon. J. 5, 6600207 (2013).
[Crossref]

Bauters, J. F.

J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, and J. E. Bowers, IEEE Photon. J. 5, 6600207 (2013).
[Crossref]

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, Opt. Express 21, 544 (2013).
[Crossref]

Belt, M.

S. Gundavarapu, T. Huffman, R. Moreira, M. Belt, J. E. Bowers, and D. J. Blumenthal, Optical Fiber Communication Conference (2016), paper W4E.5.

Blin, S.

S. Blin, M. J. F. Digonnet, and G. S. Kino, Proc. SPIE 7004, 70044X (2008).
[Crossref]

Blumenthal, D.

Blumenthal, D. J.

J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, and J. E. Bowers, IEEE Photon. J. 5, 6600207 (2013).
[Crossref]

S. Gundavarapu, T. Huffman, R. Moreira, M. Belt, J. E. Bowers, and D. J. Blumenthal, Optical Fiber Communication Conference (2016), paper W4E.5.

Bowers, J.

Bowers, J. E.

S. Srinivasan, R. Moreira, D. Blumenthal, and J. E. Bowers, Opt. Express 22, 24988 (2014).
[Crossref]

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, Opt. Express 21, 544 (2013).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, and J. E. Bowers, IEEE Photon. J. 5, 6600207 (2013).
[Crossref]

J. E. Bowers, R. S. Tucker, and C. A. Burrus, IEEE J. Quantum Electron. 20, 1230 (1984).
[Crossref]

S. Gundavarapu, T. Huffman, R. Moreira, M. Belt, J. E. Bowers, and D. J. Blumenthal, Optical Fiber Communication Conference (2016), paper W4E.5.

Burrus, C. A.

J. E. Bowers, R. S. Tucker, and C. A. Burrus, IEEE J. Quantum Electron. 20, 1230 (1984).
[Crossref]

Chen, A.

Culshaw, B.

B. Culshaw, Meas. Sci. Technol. 17, R1 (2006).
[Crossref]

B. Culshaw and I. P. Giles, IEEE Trans. Microwave Theory Tech. 30, 536 (1982).

Cutler, C. C.

Dai, D.

J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, and J. E. Bowers, IEEE Photon. J. 5, 6600207 (2013).
[Crossref]

Davenport, M. L.

Digonnet, M. J. F.

S. W. Lloyd, S. Fan, and M. J. F. Digonnet, J. Lightwave Technol. 31, 2079 (2013).
[Crossref]

S. Blin, M. J. F. Digonnet, and G. S. Kino, Proc. SPIE 7004, 70044X (2008).
[Crossref]

Doylend, J. K.

Fan, S.

Fang, A. W.

Giles, I. P.

B. Culshaw and I. P. Giles, IEEE Trans. Microwave Theory Tech. 30, 536 (1982).

Gundavarapu, S.

S. Gundavarapu, T. Huffman, R. Moreira, M. Belt, J. E. Bowers, and D. J. Blumenthal, Optical Fiber Communication Conference (2016), paper W4E.5.

Heck, M. J. R.

J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, and J. E. Bowers, IEEE Photon. J. 5, 6600207 (2013).
[Crossref]

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, Opt. Express 21, 544 (2013).
[Crossref]

Huffman, T.

S. Gundavarapu, T. Huffman, R. Moreira, M. Belt, J. E. Bowers, and D. J. Blumenthal, Optical Fiber Communication Conference (2016), paper W4E.5.

Kino, G. S.

S. Blin, M. J. F. Digonnet, and G. S. Kino, Proc. SPIE 7004, 70044X (2008).
[Crossref]

Kroemer, H.

Lefevre, H. C.

H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 2014).

Lloyd, S. W.

Mizumoto, T.

Moreira, R.

S. Srinivasan, R. Moreira, D. Blumenthal, and J. E. Bowers, Opt. Express 22, 24988 (2014).
[Crossref]

S. Gundavarapu, T. Huffman, R. Moreira, M. Belt, J. E. Bowers, and D. J. Blumenthal, Optical Fiber Communication Conference (2016), paper W4E.5.

Nayak, J.

Newton, S. A.

Pintus, P.

Shaw, H. J.

Shorthill, R. W.

Srinivasan, S.

Tien, M.-C.

Tucker, R. S.

J. E. Bowers, R. S. Tucker, and C. A. Burrus, IEEE J. Quantum Electron. 20, 1230 (1984).
[Crossref]

Vali, V.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

J. E. Bowers, R. S. Tucker, and C. A. Burrus, IEEE J. Quantum Electron. 20, 1230 (1984).
[Crossref]

IEEE Photon. J. (1)

J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, and J. E. Bowers, IEEE Photon. J. 5, 6600207 (2013).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

B. Culshaw and I. P. Giles, IEEE Trans. Microwave Theory Tech. 30, 536 (1982).

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

B. Culshaw, Meas. Sci. Technol. 17, R1 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (1)

S. Blin, M. J. F. Digonnet, and G. S. Kino, Proc. SPIE 7004, 70044X (2008).
[Crossref]

Other (2)

H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 2014).

S. Gundavarapu, T. Huffman, R. Moreira, M. Belt, J. E. Bowers, and D. J. Blumenthal, Optical Fiber Communication Conference (2016), paper W4E.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Minimum configuration of a reciprocal optical Sagnac interferometer. The polarizer is optional as, in our fully integrated version, the waveguides exhibit very high polarization extinction ratios, eliminating the need for an additional polarizer [11].

Fig. 2.
Fig. 2.

RIN comparison between broadband source, single-frequency DFB and FP lasers.

Fig. 3.
Fig. 3.

Measured spectra and corresponding coherence function for a DFB laser. The three rows correspond to (a) continuous-wave (coherence length L c = 6536    mm , measured with self-heterodyne method); (b) single-tone modulation (300 MHz, L c = 42    mm ); and (c) two-tone modulation (300 and 99 MHz, L c = 48    mm ). Fast FM modulation allows for a reduction of the coherence length by approximately two orders of magnitude.

Fig. 4.
Fig. 4.

Measured spectra and corresponding coherence function for an FP laser. The two rows correspond to (a) continuous-wave (coherence length L c = 145    mm ) and (b) single-tone modulation (300 MHz, L c = 47    mm ).

Fig. 5.
Fig. 5.

Schematic of in-house assembled fiber-based optical gyroscope. All fibers after the first polarizer are PM, and input polarization is optimized for maximum power at the photodiode. The coil diameter is 20 cm. Each fiber component is connected to the next by an FC/APC connector.

Fig. 6.
Fig. 6.

Allan deviation measurements for each optical source at CW, single, and two-tone modulation. FM modulation improves both the ARW and bias stability in all cases.

Tables (1)

Tables Icon

Table 1. Key Performance Indicators for ASE and Laser-Based Gyroscope Measurementsa

Metrics