Abstract

In photoacoustic spectroscopy (PAS), wavelength dependent optical attenuation of biological tissue presents a challenge to measure the absolute oxygen saturation of hemoglobin (sO2). Here, we employ the combination of photoacoustics and acousto-optics (AO) at two optical wavelengths to achieve quantification, where AO serves as a sensor for the relative local fluence. We demonstrate that our method enables compensation of spatial as well as wavelength dependent fluence variations in PAS without a priori knowledge about the optical properties of the medium. The fluence compensated photoacoustic images at two excitation wavelengths are used to estimate the absolute oxygen saturation of blood in a spatially and spectroscopically heterogeneous phantom.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photoacoustic and acousto-optic tomography for quantitative and functional imaging

Altaf Hussain, Erwin Hondebrink, Jacob Staley, and Wiendelt Steenbergen
Optica 5(12) 1579-1589 (2018)

Photoacoustic oximetry imaging performance evaluation using dynamic blood flow phantoms with tunable oxygen saturation

William C. Vogt, Xuewen Zhou, Rudy Andriani, Keith A. Wear, T. Joshua Pfefer, and Brian S. Garra
Biomed. Opt. Express 10(2) 449-464 (2019)

Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals

Jun Xia, Amos Danielli, Yan Liu, Lidai Wang, Konstantin Maslov, and Lihong V. Wang
Opt. Lett. 38(15) 2800-2803 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. Beard, Interface Focus 1, 602 (2011).
  2. S. Mallidi, G. P. Luke, and S. Emelianov, Trends Biotechnol. 29, 213 (2011).
    [Crossref]
  3. L. H. V. Wang and S. Hu, Science 335, 1458 (2012).
    [Crossref]
  4. B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, J. Biomed. Opt. 17, 061202 (2012).
    [Crossref]
  5. T. Seki, M. Fujioka, H. Fukushima, H. Matsumori, N. Maegawa, K. Norimoto, and K. Okuchi, Int. J. Burns Trauma 4, 40 (2014).
  6. C. K. Sen, Wound Repair Regen. 17, 1 (2009).
    [Crossref]
  7. B. J. Moeller, R. A. Richardson, and M. W. Dewhirst, Cancer Metast. Rev. 26, 241 (2007).
  8. P. Vaupel and A. Mayer, Cancer Metast. Rev. 26, 225 (2007).
  9. R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, Appl. Opt. 41, 4722 (2002).
    [Crossref]
  10. J. Xia, A. Danielli, Y. Liu, L. D. Wang, K. Maslov, and L. V. Wang, Opt. Lett. 38, 2800 (2013).
    [Crossref]
  11. K. Daoudi, A. Hussain, E. Hondebrink, and W. Steenbergen, Opt. Express 20, 14117 (2012).
    [Crossref]
  12. J. Li, G. Ku, and L. H. V. Wang, Appl. Opt. 41, 6030 (2002).
    [Crossref]
  13. R. Zemp, S. Sakadzic, and L. V. Wang, Phys. Rev. E 73, 061920 (2006).
    [Crossref]
  14. M. Jaeger, S. Schupbach, A. Gertsch, M. Kitz, and M. Frenz, Inverse Probl. 23, S51 (2007).
    [Crossref]
  15. N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, Laser Med. Sci. 29, 453 (2014).
  16. A. Hussain, K. Daoudi, E. Hondebrink, and W. Steenbergen, J. Biomed. Opt. 19, 066002 (2014).
    [Crossref]
  17. S. Resink, E. Hondebrink, and W. Steenbergen, Opt. Lett. 39, 6486 (2014).
    [Crossref]

2014 (4)

T. Seki, M. Fujioka, H. Fukushima, H. Matsumori, N. Maegawa, K. Norimoto, and K. Okuchi, Int. J. Burns Trauma 4, 40 (2014).

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, Laser Med. Sci. 29, 453 (2014).

A. Hussain, K. Daoudi, E. Hondebrink, and W. Steenbergen, J. Biomed. Opt. 19, 066002 (2014).
[Crossref]

S. Resink, E. Hondebrink, and W. Steenbergen, Opt. Lett. 39, 6486 (2014).
[Crossref]

2013 (1)

2012 (3)

K. Daoudi, A. Hussain, E. Hondebrink, and W. Steenbergen, Opt. Express 20, 14117 (2012).
[Crossref]

L. H. V. Wang and S. Hu, Science 335, 1458 (2012).
[Crossref]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, J. Biomed. Opt. 17, 061202 (2012).
[Crossref]

2011 (2)

P. Beard, Interface Focus 1, 602 (2011).

S. Mallidi, G. P. Luke, and S. Emelianov, Trends Biotechnol. 29, 213 (2011).
[Crossref]

2009 (1)

C. K. Sen, Wound Repair Regen. 17, 1 (2009).
[Crossref]

2007 (3)

B. J. Moeller, R. A. Richardson, and M. W. Dewhirst, Cancer Metast. Rev. 26, 241 (2007).

P. Vaupel and A. Mayer, Cancer Metast. Rev. 26, 225 (2007).

M. Jaeger, S. Schupbach, A. Gertsch, M. Kitz, and M. Frenz, Inverse Probl. 23, S51 (2007).
[Crossref]

2006 (1)

R. Zemp, S. Sakadzic, and L. V. Wang, Phys. Rev. E 73, 061920 (2006).
[Crossref]

2002 (2)

Aalders, M. C. G.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, Laser Med. Sci. 29, 453 (2014).

Arridge, S. R.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, J. Biomed. Opt. 17, 061202 (2012).
[Crossref]

Beard, P.

P. Beard, Interface Focus 1, 602 (2011).

Beard, P. C.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, J. Biomed. Opt. 17, 061202 (2012).
[Crossref]

Bosschaart, N.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, Laser Med. Sci. 29, 453 (2014).

Cox, B.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, J. Biomed. Opt. 17, 061202 (2012).
[Crossref]

Danielli, A.

Daoudi, K.

A. Hussain, K. Daoudi, E. Hondebrink, and W. Steenbergen, J. Biomed. Opt. 19, 066002 (2014).
[Crossref]

K. Daoudi, A. Hussain, E. Hondebrink, and W. Steenbergen, Opt. Express 20, 14117 (2012).
[Crossref]

Dewhirst, M. W.

B. J. Moeller, R. A. Richardson, and M. W. Dewhirst, Cancer Metast. Rev. 26, 241 (2007).

Deyo, D. J.

Edelman, G. J.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, Laser Med. Sci. 29, 453 (2014).

Emelianov, S.

S. Mallidi, G. P. Luke, and S. Emelianov, Trends Biotechnol. 29, 213 (2011).
[Crossref]

Esenaliev, R. O.

Faber, D. J.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, Laser Med. Sci. 29, 453 (2014).

Frenz, M.

M. Jaeger, S. Schupbach, A. Gertsch, M. Kitz, and M. Frenz, Inverse Probl. 23, S51 (2007).
[Crossref]

Fujioka, M.

T. Seki, M. Fujioka, H. Fukushima, H. Matsumori, N. Maegawa, K. Norimoto, and K. Okuchi, Int. J. Burns Trauma 4, 40 (2014).

Fukushima, H.

T. Seki, M. Fujioka, H. Fukushima, H. Matsumori, N. Maegawa, K. Norimoto, and K. Okuchi, Int. J. Burns Trauma 4, 40 (2014).

Gertsch, A.

M. Jaeger, S. Schupbach, A. Gertsch, M. Kitz, and M. Frenz, Inverse Probl. 23, S51 (2007).
[Crossref]

Hondebrink, E.

Hu, S.

L. H. V. Wang and S. Hu, Science 335, 1458 (2012).
[Crossref]

Hussain, A.

A. Hussain, K. Daoudi, E. Hondebrink, and W. Steenbergen, J. Biomed. Opt. 19, 066002 (2014).
[Crossref]

K. Daoudi, A. Hussain, E. Hondebrink, and W. Steenbergen, Opt. Express 20, 14117 (2012).
[Crossref]

Jaeger, M.

M. Jaeger, S. Schupbach, A. Gertsch, M. Kitz, and M. Frenz, Inverse Probl. 23, S51 (2007).
[Crossref]

Kitz, M.

M. Jaeger, S. Schupbach, A. Gertsch, M. Kitz, and M. Frenz, Inverse Probl. 23, S51 (2007).
[Crossref]

Ku, G.

Larin, K. V.

Larina, I. V.

Laufer, J. G.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, J. Biomed. Opt. 17, 061202 (2012).
[Crossref]

Li, J.

Liu, Y.

Luke, G. P.

S. Mallidi, G. P. Luke, and S. Emelianov, Trends Biotechnol. 29, 213 (2011).
[Crossref]

Maegawa, N.

T. Seki, M. Fujioka, H. Fukushima, H. Matsumori, N. Maegawa, K. Norimoto, and K. Okuchi, Int. J. Burns Trauma 4, 40 (2014).

Mallidi, S.

S. Mallidi, G. P. Luke, and S. Emelianov, Trends Biotechnol. 29, 213 (2011).
[Crossref]

Maslov, K.

Matsumori, H.

T. Seki, M. Fujioka, H. Fukushima, H. Matsumori, N. Maegawa, K. Norimoto, and K. Okuchi, Int. J. Burns Trauma 4, 40 (2014).

Mayer, A.

P. Vaupel and A. Mayer, Cancer Metast. Rev. 26, 225 (2007).

Moeller, B. J.

B. J. Moeller, R. A. Richardson, and M. W. Dewhirst, Cancer Metast. Rev. 26, 241 (2007).

Motamedi, M.

Norimoto, K.

T. Seki, M. Fujioka, H. Fukushima, H. Matsumori, N. Maegawa, K. Norimoto, and K. Okuchi, Int. J. Burns Trauma 4, 40 (2014).

Okuchi, K.

T. Seki, M. Fujioka, H. Fukushima, H. Matsumori, N. Maegawa, K. Norimoto, and K. Okuchi, Int. J. Burns Trauma 4, 40 (2014).

Prough, D. S.

Resink, S.

Richardson, R. A.

B. J. Moeller, R. A. Richardson, and M. W. Dewhirst, Cancer Metast. Rev. 26, 241 (2007).

Sakadzic, S.

R. Zemp, S. Sakadzic, and L. V. Wang, Phys. Rev. E 73, 061920 (2006).
[Crossref]

Schupbach, S.

M. Jaeger, S. Schupbach, A. Gertsch, M. Kitz, and M. Frenz, Inverse Probl. 23, S51 (2007).
[Crossref]

Seki, T.

T. Seki, M. Fujioka, H. Fukushima, H. Matsumori, N. Maegawa, K. Norimoto, and K. Okuchi, Int. J. Burns Trauma 4, 40 (2014).

Sen, C. K.

C. K. Sen, Wound Repair Regen. 17, 1 (2009).
[Crossref]

Steenbergen, W.

van Leeuwen, T. G.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, Laser Med. Sci. 29, 453 (2014).

Vaupel, P.

P. Vaupel and A. Mayer, Cancer Metast. Rev. 26, 225 (2007).

Wang, L. D.

Wang, L. H. V.

Wang, L. V.

Xia, J.

Zemp, R.

R. Zemp, S. Sakadzic, and L. V. Wang, Phys. Rev. E 73, 061920 (2006).
[Crossref]

Appl. Opt. (2)

Cancer Metast. Rev. (2)

B. J. Moeller, R. A. Richardson, and M. W. Dewhirst, Cancer Metast. Rev. 26, 241 (2007).

P. Vaupel and A. Mayer, Cancer Metast. Rev. 26, 225 (2007).

Int. J. Burns Trauma (1)

T. Seki, M. Fujioka, H. Fukushima, H. Matsumori, N. Maegawa, K. Norimoto, and K. Okuchi, Int. J. Burns Trauma 4, 40 (2014).

Interface Focus (1)

P. Beard, Interface Focus 1, 602 (2011).

Inverse Probl. (1)

M. Jaeger, S. Schupbach, A. Gertsch, M. Kitz, and M. Frenz, Inverse Probl. 23, S51 (2007).
[Crossref]

J. Biomed. Opt. (2)

A. Hussain, K. Daoudi, E. Hondebrink, and W. Steenbergen, J. Biomed. Opt. 19, 066002 (2014).
[Crossref]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, J. Biomed. Opt. 17, 061202 (2012).
[Crossref]

Laser Med. Sci. (1)

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, Laser Med. Sci. 29, 453 (2014).

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. E (1)

R. Zemp, S. Sakadzic, and L. V. Wang, Phys. Rev. E 73, 061920 (2006).
[Crossref]

Science (1)

L. H. V. Wang and S. Hu, Science 335, 1458 (2012).
[Crossref]

Trends Biotechnol. (1)

S. Mallidi, G. P. Luke, and S. Emelianov, Trends Biotechnol. 29, 213 (2011).
[Crossref]

Wound Repair Regen. (1)

C. K. Sen, Wound Repair Regen. 17, 1 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic of the combined experimental setup for PA and AO for measuring blood sO 2 . AOM, acousto-optic modulator; T, trigger signal for synchronization of lasers and CCD camera; US scanner, MyLab One (a portable US machine). (b) Photo of the phantoms used, cross section of the image plane made after the measurement. SA, sodium alginate; GNR, gold nanorods.
Fig. 2.
Fig. 2. Example of fluence compensation of PA images of 5% oxygenated blood sample at λ = 755    nm and λ = 780    nm in phantom A. (a) and (b) PA images acquired at λ = 755    nm ; (a) by exciting the medium from side 1 and (b) by exciting the phantom from side 2. (c) and (d) PA images acquired at λ = 780    nm ; (c) by exciting medium from side 1 and (d) by exciting phantom from side 2. (e) Measured Δ C as US focus propagates along a line in the x z plane through the tubes containing blood at λ = 755    nm and λ = 780    nm . Black arrows indicate tube positions as obtained from PA images; (f) and (g) fluence compensated PA images at λ = 755    nm and λ = 780    nm .
Fig. 3.
Fig. 3. Comparison of the PA image value (a) before and (b) after fluence compensation at λ = 755    nm and λ = 780    nm .
Fig. 4.
Fig. 4. Comparison of the estimated sO 2 using PA alone and AO assisted fluence compensated PA versus sO 2 measured with an oximeter; solid line represents the perfect estimation. (a) Results for phantom A and (b) results for phantom B. The legend PA&AO refers to the sO 2 estimation based on the AO assisted fluence compensated PA measurements.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

σ o = Γ E a = Γ μ a φ ,
μ a , 2 = κ p 1 , 2 * p 3 , 2 * P l , 123 * ,
Δ C s ¯ ( n o k o P o ρ v a 2 ) 2 η 2 v a f a ,
μ a , 2 ( λ ) = κ p 1 , 2 * ( λ ) p 3 , 2 * ( λ ) λ 2 Δ C ( λ ) = κ M ( λ ) ,
μ a ( λ ) = c HbO 2 ε HbO 2 ( λ ) + c Hb ε ( λ Hb ) ,
c HbO 2 Δ ε λ 1 + c T ε Hb , λ 1 = κ M λ 1 ,
c HbO 2 Δ ε λ 2 + c T ε Hb , λ 2 = κ M λ 2 ,
s O 2 = M λ 1 ε Hb , λ 2 M λ 2 ε Hb , λ 1 M λ 2 Δ ε λ 1 M λ 1 Δ ε λ 2 .

Metrics