Abstract

We report on a long wavelength emitting rare earth doped fiber laser with the emission centered at 3.5 μm and tunable across 450 nm. The longest wavelength emission was 3.78 μm which is the longest emission from a fiber laser operating at room temperature. In a simple optical arrangement employing dielectric mirrors for feedback, the laser was capable of emitting 1.45 W of near diffraction limited output power at 3.47 μm. These emission characteristics complement the emissions from quantum cascade lasers and demonstrate how all infrared dual wavelength pumping can be used to access high lying rare earth ion transitions that have previously relied on visible wavelength pumping.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping

Ori Henderson-Sapir, Jesper Munch, and David J. Ottaway
Opt. Lett. 39(3) 493-496 (2014)

Watt-level erbium-doped all-fiber laser at 3.44  μm

Vincent Fortin, Frédéric Maes, Martin Bernier, Souleymane Toubou Bah, Marc D’Auteuil, and Réal Vallée
Opt. Lett. 41(3) 559-562 (2016)

Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm

Chen Wei, Hongyu Luo, Hongxia Shi, YanJia Lyu, Han Zhang, and Yong Liu
Opt. Express 25(8) 8816-8827 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. S. Vitiello, G. Scalari, B. Williams, and P. De Natale, Opt. Express 23, 5167 (2015).
    [Crossref]
  2. M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Lu, and S. Slivken, Opt. Mater. Express 3, 1872 (2013).
    [Crossref]
  3. A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
    [Crossref]
  4. M. Ebrahim-Zadeh and S. C. Kumar, IEEE J. Sel. Top. Quantum Electron. 20, 624 (2014).
    [Crossref]
  5. C. Wang and P. Sahay, Sensors 9, 8230 (2009).
    [Crossref]
  6. D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, and A. Vertes, J. Vac. Sci. Technol. A 19, 2698 (2001).
    [Crossref]
  7. S. D. Jackson, Nat. Photonics 6, 423 (2012).
    [Crossref]
  8. M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallée, Opt. Lett. 38, 127 (2013).
    [Crossref]
  9. O. Henderson-Sapir, J. Munch, and D. J. Ottaway, Opt. Lett. 39, 493 (2014).
    [Crossref]
  10. F. Fortin, F. Maes, M. Bernier, S. Toubou, M. D’Auteuil, and R. Vallee, Opt. Lett. 41, 559 (2016).
    [Crossref]
  11. J. Swiderski, Prog. Quantum Electron. 38, 189 (2014).
    [Crossref]
  12. D. D. Hudson, R. J. Williams, M. J. Withford, and S. D. Jackson, Opt. Lett. 38, 2388 (2013).
    [Crossref]
  13. R. Royon, L. Lhermite, L. Sarger, and E. Cormier, Opt. Express 21, 13818 (2013).
    [Crossref]
  14. Z. Fu, D. Yang, W. Ye, J. Kong, and Y. Shen, Opt. Laser Technol. 41, 392 (2009).
    [Crossref]
  15. Z. Li, S. U. Alam, Y. Jung, A. M. Heidt, and D. J. Richardson, Opt. Lett. 38, 4739 (2013).
    [Crossref]
  16. J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, Phys. Rev. B 48, 15561 (1993).
    [Crossref]

2016 (1)

2015 (1)

2014 (3)

M. Ebrahim-Zadeh and S. C. Kumar, IEEE J. Sel. Top. Quantum Electron. 20, 624 (2014).
[Crossref]

J. Swiderski, Prog. Quantum Electron. 38, 189 (2014).
[Crossref]

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, Opt. Lett. 39, 493 (2014).
[Crossref]

2013 (5)

2012 (2)

A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

S. D. Jackson, Nat. Photonics 6, 423 (2012).
[Crossref]

2009 (2)

C. Wang and P. Sahay, Sensors 9, 8230 (2009).
[Crossref]

Z. Fu, D. Yang, W. Ye, J. Kong, and Y. Shen, Opt. Laser Technol. 41, 392 (2009).
[Crossref]

2001 (1)

D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, and A. Vertes, J. Vac. Sci. Technol. A 19, 2698 (2001).
[Crossref]

1993 (1)

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, Phys. Rev. B 48, 15561 (1993).
[Crossref]

Alam, S. U.

Allik, T. H.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, Phys. Rev. B 48, 15561 (1993).
[Crossref]

Bai, Y.

Bandyopadhyay, N.

Bernier, M.

Bubb, D. M.

D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, and A. Vertes, J. Vac. Sci. Technol. A 19, 2698 (2001).
[Crossref]

Callahan, J. H.

D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, and A. Vertes, J. Vac. Sci. Technol. A 19, 2698 (2001).
[Crossref]

Caron, N.

Chrisey, D. B.

D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, and A. Vertes, J. Vac. Sci. Technol. A 19, 2698 (2001).
[Crossref]

Cormier, E.

D’Auteuil, M.

De Natale, P.

Ebrahim-Zadeh, M.

M. Ebrahim-Zadeh and S. C. Kumar, IEEE J. Sel. Top. Quantum Electron. 20, 624 (2014).
[Crossref]

El-Amraoui, M.

Fortin, F.

Fortin, V.

Fu, Z.

Z. Fu, D. Yang, W. Ye, J. Kong, and Y. Shen, Opt. Laser Technol. 41, 392 (2009).
[Crossref]

Gruber, J. B.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, Phys. Rev. B 48, 15561 (1993).
[Crossref]

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

Heidt, A. M.

Henderson-Sapir, O.

Hills, M. E.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, Phys. Rev. B 48, 15561 (1993).
[Crossref]

Horwitz, J. S.

D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, and A. Vertes, J. Vac. Sci. Technol. A 19, 2698 (2001).
[Crossref]

Houser, E. J.

D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, and A. Vertes, J. Vac. Sci. Technol. A 19, 2698 (2001).
[Crossref]

Hudson, D. D.

Jackson, S. D.

Jung, Y.

Kong, J.

Z. Fu, D. Yang, W. Ye, J. Kong, and Y. Shen, Opt. Laser Technol. 41, 392 (2009).
[Crossref]

Kumar, S. C.

M. Ebrahim-Zadeh and S. C. Kumar, IEEE J. Sel. Top. Quantum Electron. 20, 624 (2014).
[Crossref]

Lhermite, L.

Li, Z.

Lu, Q.

Maes, F.

McGill, R. A.

D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, and A. Vertes, J. Vac. Sci. Technol. A 19, 2698 (2001).
[Crossref]

Messaddeq, Y.

Morrison, C. A.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, Phys. Rev. B 48, 15561 (1993).
[Crossref]

Munch, J.

Ottaway, D. J.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

Quagliano, J. R.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, Phys. Rev. B 48, 15561 (1993).
[Crossref]

Razeghi, M.

Reid, M. F.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, Phys. Rev. B 48, 15561 (1993).
[Crossref]

Richardson, D. J.

Richardson, F. S.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, Phys. Rev. B 48, 15561 (1993).
[Crossref]

Royon, R.

Sahay, P.

C. Wang and P. Sahay, Sensors 9, 8230 (2009).
[Crossref]

Sarger, L.

Scalari, G.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

Seltzer, M. D.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, Phys. Rev. B 48, 15561 (1993).
[Crossref]

Shen, Y.

Z. Fu, D. Yang, W. Ye, J. Kong, and Y. Shen, Opt. Laser Technol. 41, 392 (2009).
[Crossref]

Slivken, S.

Stevens, S. B.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, Phys. Rev. B 48, 15561 (1993).
[Crossref]

Swiderski, J.

J. Swiderski, Prog. Quantum Electron. 38, 189 (2014).
[Crossref]

Toubou, S.

Vallee, R.

Vallée, R.

Vertes, A.

D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, and A. Vertes, J. Vac. Sci. Technol. A 19, 2698 (2001).
[Crossref]

Vitiello, M. S.

Wang, C.

C. Wang and P. Sahay, Sensors 9, 8230 (2009).
[Crossref]

Williams, B.

Williams, R. J.

Withford, M. J.

Yang, D.

Z. Fu, D. Yang, W. Ye, J. Kong, and Y. Shen, Opt. Laser Technol. 41, 392 (2009).
[Crossref]

Ye, W.

Z. Fu, D. Yang, W. Ye, J. Kong, and Y. Shen, Opt. Laser Technol. 41, 392 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ebrahim-Zadeh and S. C. Kumar, IEEE J. Sel. Top. Quantum Electron. 20, 624 (2014).
[Crossref]

J. Vac. Sci. Technol. A (1)

D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, and A. Vertes, J. Vac. Sci. Technol. A 19, 2698 (2001).
[Crossref]

Nat. Photonics (2)

S. D. Jackson, Nat. Photonics 6, 423 (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

Z. Fu, D. Yang, W. Ye, J. Kong, and Y. Shen, Opt. Laser Technol. 41, 392 (2009).
[Crossref]

Opt. Lett. (5)

Opt. Mater. Express (1)

Phys. Rev. B (1)

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, Phys. Rev. B 48, 15561 (1993).
[Crossref]

Prog. Quantum Electron. (1)

J. Swiderski, Prog. Quantum Electron. 38, 189 (2014).
[Crossref]

Sensors (1)

C. Wang and P. Sahay, Sensors 9, 8230 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Measured emission cross sections of the rare earth ions when doped into ZBLAN glass that have emission wavelengths longer than 2.5 μm.

Fig. 2.
Fig. 2.

Simplified energy level diagram showing the laser transitions and the DWP process.

Fig. 3.
Fig. 3.

Schematic diagram of the tunable fiber laser.

Fig. 4.
Fig. 4.

Measured tuning characteristics of the fiber laser using a pump power of 5 W at 977 nm and different levels of 1973 nm pump power. The red dashed line shows the fluorescence spectrum obtained from the F 9 / 2 4 I 9 / 2 4 transition without the resonator in place.

Fig. 5.
Fig. 5.

Typical output laser linewidth of the tunable laser.

Fig. 6.
Fig. 6.

Measured tuning characteristic of the 2.8 m long fiber laser when operated on the I 11 / 2 4 I 13 / 2 4 transition at 2.8 μm. 6 W of only P 1 is incident on the fiber.

Fig. 7.
Fig. 7.

Measured output power as a function of the pumping with P 2 for the dielectric mirror only resonator. P 1 was maintained at 2 W up to the red line beyond which it was increased incrementally (see numbers to the right of data) to a maximum of 4 W. Instabilities in the laser power prevented obtaining higher output power.

Fig. 8.
Fig. 8.

Close up of typical laser lines running at higher power levels. With increasing output power, the lines would redistribute the power to operate at longer wavelengths.

Fig. 9.
Fig. 9.

Typical output laser beam quality and beam shape (inset) at 1 W of output power.

Metrics