Abstract

Despite the long-standing importance of transient absorption (TA) spectroscopy, many researchers remain frustrated by the difficulty of measuring the nanosecond range in a wide spectral range. To address this shortcoming, we propose a TA spectrophotometer in which there is no synchronization between a pump pulse and a train of multiple probe pulses from a picosecond supercontinuum light source, termed the randomly-interleaved-pulse-train (RIPT) method. For each pump pulse, many monochromatized probe pulses impinge upon the sample, and the associated pump-probe time delays are determined passively shot by shot with subnanosecond accuracy. By repeatedly pumping with automatically varying time delays, a TA temporal profile that covers a wide dynamic range from subnanosecond to milliseconds is simultaneously obtained. By scanning wavelength, this single, simple apparatus acquires not only wide time range TA profiles, but also broadband TA spectra from the visible through the near-infrared regions. Furthermore, we present a typical result to demonstrate how the RIPT method may be used to correct for fluorescence, which often pollutes TA curves.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiscale control and rapid scanning of time delays ranging from picosecond to millisecond

Xavier Solinas, Laura Antonucci, Adeline Bonvalet, and Manuel Joffre
Opt. Express 25(15) 17811-17819 (2017)

Asynchronous optical sampling with arbitrary detuning between laser repetition rates

Laura Antonucci, Xavier Solinas, Adeline Bonvalet, and Manuel Joffre
Opt. Express 20(16) 17928-17937 (2012)

Arbitrary-detuning asynchronous optical sampling with amplified laser systems

Laura Antonucci, Adeline Bonvalet, Xavier Solinas, Louis Daniault, and Manuel Joffre
Opt. Express 23(21) 27931-27940 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. G. W. Norrish and G. Porter, Nature 164, 658 (1949).
    [Crossref]
  2. A. H. Zewail, Angew. Chem. Int. Ed. 39, 2586 (2000).
  3. H. Ohkita and S. Ito, Polymer 52, 4397 (2011).
    [Crossref]
  4. S. Fukuzumi and K. Ohkubo, J. Mater. Chem. 22, 4575 (2012).
    [Crossref]
  5. I. Morino, M. Wakasa, and H. Hayashi, Mol. Phys. 100, 1283 (2002).
    [Crossref]
  6. R. Katoh, M. Murai, and A. Furube, Chem. Phys. Lett. 461, 238 (2008).
    [Crossref]
  7. J. Jasny, J. Sepit, J. Karpiuk, and J. Gilewski, Rev. Sci. Instrum. 65, 3646 (1994).
    [Crossref]
  8. A. Yu, X. Ye, D. Ionascu, W. Cao, and P. M. Champion, Rev. Sci. Instrum. 76, 114301 (2005).
    [Crossref]
  9. E. C. Carroll, M. P. Hill, D. Madsen, K. R. Malley, and D. S. Larsen, Rev. Sci. Instrum. 80, 026102 (2009).
    [Crossref]
  10. B. Lang, S. Mosquera-Vázquez, D. Lovy, P. Sherin, V. Markovic, and E. Vauthey, Rev. Sci. Instrum. 84, 073107 (2013).
    [Crossref]
  11. L. Antonucci, A. Bonvalet, X. Solinas, M. R. Jones, M. H. Vos, and M. Joffre, Opt. Lett. 38, 3322 (2013).
    [Crossref]
  12. L. Antonucci, A. Bonvalet, X. Solinas, L. Daniault, and M. Joffre, Opt. Express 23, 27931 (2015).
    [Crossref]
  13. U. Schmidhammer, S. Roth, E. Riedle, A. A. Tishkov, and H. Mayr, Rev. Sci. Instrum. 76, 093111 (2005).
    [Crossref]
  14. J. Kalisz, Metrologia 41, 17 (2004).
    [Crossref]
  15. M. Lee, O.-K. Song, J.-C. Seo, D. Kim, Y. D. Suh, S. M. Jin, and S. K. Kim, Chem. Phys. Lett. 196, 325 (1992).
    [Crossref]
  16. H. Suzuki, Y. Iizumi, M. Tange, S.-K. Joung, A. Furube, T. Wada, T. Tajima, Y. Takaguchi, and T. Okazaki, Fullerenes, Nanotubes, Carbon Nanostruct. 22, 75 (2014).
    [Crossref]

2015 (1)

2014 (1)

H. Suzuki, Y. Iizumi, M. Tange, S.-K. Joung, A. Furube, T. Wada, T. Tajima, Y. Takaguchi, and T. Okazaki, Fullerenes, Nanotubes, Carbon Nanostruct. 22, 75 (2014).
[Crossref]

2013 (2)

L. Antonucci, A. Bonvalet, X. Solinas, M. R. Jones, M. H. Vos, and M. Joffre, Opt. Lett. 38, 3322 (2013).
[Crossref]

B. Lang, S. Mosquera-Vázquez, D. Lovy, P. Sherin, V. Markovic, and E. Vauthey, Rev. Sci. Instrum. 84, 073107 (2013).
[Crossref]

2012 (1)

S. Fukuzumi and K. Ohkubo, J. Mater. Chem. 22, 4575 (2012).
[Crossref]

2011 (1)

H. Ohkita and S. Ito, Polymer 52, 4397 (2011).
[Crossref]

2009 (1)

E. C. Carroll, M. P. Hill, D. Madsen, K. R. Malley, and D. S. Larsen, Rev. Sci. Instrum. 80, 026102 (2009).
[Crossref]

2008 (1)

R. Katoh, M. Murai, and A. Furube, Chem. Phys. Lett. 461, 238 (2008).
[Crossref]

2005 (2)

A. Yu, X. Ye, D. Ionascu, W. Cao, and P. M. Champion, Rev. Sci. Instrum. 76, 114301 (2005).
[Crossref]

U. Schmidhammer, S. Roth, E. Riedle, A. A. Tishkov, and H. Mayr, Rev. Sci. Instrum. 76, 093111 (2005).
[Crossref]

2004 (1)

J. Kalisz, Metrologia 41, 17 (2004).
[Crossref]

2002 (1)

I. Morino, M. Wakasa, and H. Hayashi, Mol. Phys. 100, 1283 (2002).
[Crossref]

2000 (1)

A. H. Zewail, Angew. Chem. Int. Ed. 39, 2586 (2000).

1994 (1)

J. Jasny, J. Sepit, J. Karpiuk, and J. Gilewski, Rev. Sci. Instrum. 65, 3646 (1994).
[Crossref]

1992 (1)

M. Lee, O.-K. Song, J.-C. Seo, D. Kim, Y. D. Suh, S. M. Jin, and S. K. Kim, Chem. Phys. Lett. 196, 325 (1992).
[Crossref]

1949 (1)

R. G. W. Norrish and G. Porter, Nature 164, 658 (1949).
[Crossref]

Antonucci, L.

Bonvalet, A.

Cao, W.

A. Yu, X. Ye, D. Ionascu, W. Cao, and P. M. Champion, Rev. Sci. Instrum. 76, 114301 (2005).
[Crossref]

Carroll, E. C.

E. C. Carroll, M. P. Hill, D. Madsen, K. R. Malley, and D. S. Larsen, Rev. Sci. Instrum. 80, 026102 (2009).
[Crossref]

Champion, P. M.

A. Yu, X. Ye, D. Ionascu, W. Cao, and P. M. Champion, Rev. Sci. Instrum. 76, 114301 (2005).
[Crossref]

Daniault, L.

Fukuzumi, S.

S. Fukuzumi and K. Ohkubo, J. Mater. Chem. 22, 4575 (2012).
[Crossref]

Furube, A.

H. Suzuki, Y. Iizumi, M. Tange, S.-K. Joung, A. Furube, T. Wada, T. Tajima, Y. Takaguchi, and T. Okazaki, Fullerenes, Nanotubes, Carbon Nanostruct. 22, 75 (2014).
[Crossref]

R. Katoh, M. Murai, and A. Furube, Chem. Phys. Lett. 461, 238 (2008).
[Crossref]

Gilewski, J.

J. Jasny, J. Sepit, J. Karpiuk, and J. Gilewski, Rev. Sci. Instrum. 65, 3646 (1994).
[Crossref]

Hayashi, H.

I. Morino, M. Wakasa, and H. Hayashi, Mol. Phys. 100, 1283 (2002).
[Crossref]

Hill, M. P.

E. C. Carroll, M. P. Hill, D. Madsen, K. R. Malley, and D. S. Larsen, Rev. Sci. Instrum. 80, 026102 (2009).
[Crossref]

Iizumi, Y.

H. Suzuki, Y. Iizumi, M. Tange, S.-K. Joung, A. Furube, T. Wada, T. Tajima, Y. Takaguchi, and T. Okazaki, Fullerenes, Nanotubes, Carbon Nanostruct. 22, 75 (2014).
[Crossref]

Ionascu, D.

A. Yu, X. Ye, D. Ionascu, W. Cao, and P. M. Champion, Rev. Sci. Instrum. 76, 114301 (2005).
[Crossref]

Ito, S.

H. Ohkita and S. Ito, Polymer 52, 4397 (2011).
[Crossref]

Jasny, J.

J. Jasny, J. Sepit, J. Karpiuk, and J. Gilewski, Rev. Sci. Instrum. 65, 3646 (1994).
[Crossref]

Jin, S. M.

M. Lee, O.-K. Song, J.-C. Seo, D. Kim, Y. D. Suh, S. M. Jin, and S. K. Kim, Chem. Phys. Lett. 196, 325 (1992).
[Crossref]

Joffre, M.

Jones, M. R.

Joung, S.-K.

H. Suzuki, Y. Iizumi, M. Tange, S.-K. Joung, A. Furube, T. Wada, T. Tajima, Y. Takaguchi, and T. Okazaki, Fullerenes, Nanotubes, Carbon Nanostruct. 22, 75 (2014).
[Crossref]

Kalisz, J.

J. Kalisz, Metrologia 41, 17 (2004).
[Crossref]

Karpiuk, J.

J. Jasny, J. Sepit, J. Karpiuk, and J. Gilewski, Rev. Sci. Instrum. 65, 3646 (1994).
[Crossref]

Katoh, R.

R. Katoh, M. Murai, and A. Furube, Chem. Phys. Lett. 461, 238 (2008).
[Crossref]

Kim, D.

M. Lee, O.-K. Song, J.-C. Seo, D. Kim, Y. D. Suh, S. M. Jin, and S. K. Kim, Chem. Phys. Lett. 196, 325 (1992).
[Crossref]

Kim, S. K.

M. Lee, O.-K. Song, J.-C. Seo, D. Kim, Y. D. Suh, S. M. Jin, and S. K. Kim, Chem. Phys. Lett. 196, 325 (1992).
[Crossref]

Lang, B.

B. Lang, S. Mosquera-Vázquez, D. Lovy, P. Sherin, V. Markovic, and E. Vauthey, Rev. Sci. Instrum. 84, 073107 (2013).
[Crossref]

Larsen, D. S.

E. C. Carroll, M. P. Hill, D. Madsen, K. R. Malley, and D. S. Larsen, Rev. Sci. Instrum. 80, 026102 (2009).
[Crossref]

Lee, M.

M. Lee, O.-K. Song, J.-C. Seo, D. Kim, Y. D. Suh, S. M. Jin, and S. K. Kim, Chem. Phys. Lett. 196, 325 (1992).
[Crossref]

Lovy, D.

B. Lang, S. Mosquera-Vázquez, D. Lovy, P. Sherin, V. Markovic, and E. Vauthey, Rev. Sci. Instrum. 84, 073107 (2013).
[Crossref]

Madsen, D.

E. C. Carroll, M. P. Hill, D. Madsen, K. R. Malley, and D. S. Larsen, Rev. Sci. Instrum. 80, 026102 (2009).
[Crossref]

Malley, K. R.

E. C. Carroll, M. P. Hill, D. Madsen, K. R. Malley, and D. S. Larsen, Rev. Sci. Instrum. 80, 026102 (2009).
[Crossref]

Markovic, V.

B. Lang, S. Mosquera-Vázquez, D. Lovy, P. Sherin, V. Markovic, and E. Vauthey, Rev. Sci. Instrum. 84, 073107 (2013).
[Crossref]

Mayr, H.

U. Schmidhammer, S. Roth, E. Riedle, A. A. Tishkov, and H. Mayr, Rev. Sci. Instrum. 76, 093111 (2005).
[Crossref]

Morino, I.

I. Morino, M. Wakasa, and H. Hayashi, Mol. Phys. 100, 1283 (2002).
[Crossref]

Mosquera-Vázquez, S.

B. Lang, S. Mosquera-Vázquez, D. Lovy, P. Sherin, V. Markovic, and E. Vauthey, Rev. Sci. Instrum. 84, 073107 (2013).
[Crossref]

Murai, M.

R. Katoh, M. Murai, and A. Furube, Chem. Phys. Lett. 461, 238 (2008).
[Crossref]

Norrish, R. G. W.

R. G. W. Norrish and G. Porter, Nature 164, 658 (1949).
[Crossref]

Ohkita, H.

H. Ohkita and S. Ito, Polymer 52, 4397 (2011).
[Crossref]

Ohkubo, K.

S. Fukuzumi and K. Ohkubo, J. Mater. Chem. 22, 4575 (2012).
[Crossref]

Okazaki, T.

H. Suzuki, Y. Iizumi, M. Tange, S.-K. Joung, A. Furube, T. Wada, T. Tajima, Y. Takaguchi, and T. Okazaki, Fullerenes, Nanotubes, Carbon Nanostruct. 22, 75 (2014).
[Crossref]

Porter, G.

R. G. W. Norrish and G. Porter, Nature 164, 658 (1949).
[Crossref]

Riedle, E.

U. Schmidhammer, S. Roth, E. Riedle, A. A. Tishkov, and H. Mayr, Rev. Sci. Instrum. 76, 093111 (2005).
[Crossref]

Roth, S.

U. Schmidhammer, S. Roth, E. Riedle, A. A. Tishkov, and H. Mayr, Rev. Sci. Instrum. 76, 093111 (2005).
[Crossref]

Schmidhammer, U.

U. Schmidhammer, S. Roth, E. Riedle, A. A. Tishkov, and H. Mayr, Rev. Sci. Instrum. 76, 093111 (2005).
[Crossref]

Seo, J.-C.

M. Lee, O.-K. Song, J.-C. Seo, D. Kim, Y. D. Suh, S. M. Jin, and S. K. Kim, Chem. Phys. Lett. 196, 325 (1992).
[Crossref]

Sepit, J.

J. Jasny, J. Sepit, J. Karpiuk, and J. Gilewski, Rev. Sci. Instrum. 65, 3646 (1994).
[Crossref]

Sherin, P.

B. Lang, S. Mosquera-Vázquez, D. Lovy, P. Sherin, V. Markovic, and E. Vauthey, Rev. Sci. Instrum. 84, 073107 (2013).
[Crossref]

Solinas, X.

Song, O.-K.

M. Lee, O.-K. Song, J.-C. Seo, D. Kim, Y. D. Suh, S. M. Jin, and S. K. Kim, Chem. Phys. Lett. 196, 325 (1992).
[Crossref]

Suh, Y. D.

M. Lee, O.-K. Song, J.-C. Seo, D. Kim, Y. D. Suh, S. M. Jin, and S. K. Kim, Chem. Phys. Lett. 196, 325 (1992).
[Crossref]

Suzuki, H.

H. Suzuki, Y. Iizumi, M. Tange, S.-K. Joung, A. Furube, T. Wada, T. Tajima, Y. Takaguchi, and T. Okazaki, Fullerenes, Nanotubes, Carbon Nanostruct. 22, 75 (2014).
[Crossref]

Tajima, T.

H. Suzuki, Y. Iizumi, M. Tange, S.-K. Joung, A. Furube, T. Wada, T. Tajima, Y. Takaguchi, and T. Okazaki, Fullerenes, Nanotubes, Carbon Nanostruct. 22, 75 (2014).
[Crossref]

Takaguchi, Y.

H. Suzuki, Y. Iizumi, M. Tange, S.-K. Joung, A. Furube, T. Wada, T. Tajima, Y. Takaguchi, and T. Okazaki, Fullerenes, Nanotubes, Carbon Nanostruct. 22, 75 (2014).
[Crossref]

Tange, M.

H. Suzuki, Y. Iizumi, M. Tange, S.-K. Joung, A. Furube, T. Wada, T. Tajima, Y. Takaguchi, and T. Okazaki, Fullerenes, Nanotubes, Carbon Nanostruct. 22, 75 (2014).
[Crossref]

Tishkov, A. A.

U. Schmidhammer, S. Roth, E. Riedle, A. A. Tishkov, and H. Mayr, Rev. Sci. Instrum. 76, 093111 (2005).
[Crossref]

Vauthey, E.

B. Lang, S. Mosquera-Vázquez, D. Lovy, P. Sherin, V. Markovic, and E. Vauthey, Rev. Sci. Instrum. 84, 073107 (2013).
[Crossref]

Vos, M. H.

Wada, T.

H. Suzuki, Y. Iizumi, M. Tange, S.-K. Joung, A. Furube, T. Wada, T. Tajima, Y. Takaguchi, and T. Okazaki, Fullerenes, Nanotubes, Carbon Nanostruct. 22, 75 (2014).
[Crossref]

Wakasa, M.

I. Morino, M. Wakasa, and H. Hayashi, Mol. Phys. 100, 1283 (2002).
[Crossref]

Ye, X.

A. Yu, X. Ye, D. Ionascu, W. Cao, and P. M. Champion, Rev. Sci. Instrum. 76, 114301 (2005).
[Crossref]

Yu, A.

A. Yu, X. Ye, D. Ionascu, W. Cao, and P. M. Champion, Rev. Sci. Instrum. 76, 114301 (2005).
[Crossref]

Zewail, A. H.

A. H. Zewail, Angew. Chem. Int. Ed. 39, 2586 (2000).

Angew. Chem. Int. Ed. (1)

A. H. Zewail, Angew. Chem. Int. Ed. 39, 2586 (2000).

Chem. Phys. Lett. (2)

R. Katoh, M. Murai, and A. Furube, Chem. Phys. Lett. 461, 238 (2008).
[Crossref]

M. Lee, O.-K. Song, J.-C. Seo, D. Kim, Y. D. Suh, S. M. Jin, and S. K. Kim, Chem. Phys. Lett. 196, 325 (1992).
[Crossref]

Fullerenes, Nanotubes, Carbon Nanostruct. (1)

H. Suzuki, Y. Iizumi, M. Tange, S.-K. Joung, A. Furube, T. Wada, T. Tajima, Y. Takaguchi, and T. Okazaki, Fullerenes, Nanotubes, Carbon Nanostruct. 22, 75 (2014).
[Crossref]

J. Mater. Chem. (1)

S. Fukuzumi and K. Ohkubo, J. Mater. Chem. 22, 4575 (2012).
[Crossref]

Metrologia (1)

J. Kalisz, Metrologia 41, 17 (2004).
[Crossref]

Mol. Phys. (1)

I. Morino, M. Wakasa, and H. Hayashi, Mol. Phys. 100, 1283 (2002).
[Crossref]

Nature (1)

R. G. W. Norrish and G. Porter, Nature 164, 658 (1949).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Polymer (1)

H. Ohkita and S. Ito, Polymer 52, 4397 (2011).
[Crossref]

Rev. Sci. Instrum. (5)

J. Jasny, J. Sepit, J. Karpiuk, and J. Gilewski, Rev. Sci. Instrum. 65, 3646 (1994).
[Crossref]

A. Yu, X. Ye, D. Ionascu, W. Cao, and P. M. Champion, Rev. Sci. Instrum. 76, 114301 (2005).
[Crossref]

E. C. Carroll, M. P. Hill, D. Madsen, K. R. Malley, and D. S. Larsen, Rev. Sci. Instrum. 80, 026102 (2009).
[Crossref]

B. Lang, S. Mosquera-Vázquez, D. Lovy, P. Sherin, V. Markovic, and E. Vauthey, Rev. Sci. Instrum. 84, 073107 (2013).
[Crossref]

U. Schmidhammer, S. Roth, E. Riedle, A. A. Tishkov, and H. Mayr, Rev. Sci. Instrum. 76, 093111 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Principle of PT and RIPT method. The TA temporal profile is reconstructed by plotting the probe amplitude from multiple probe-pulse trains versus corresponding PP delay time, t d . When the first pump pulse excites the sample, the output signal of a probe-pulse train transmitted through the sample with a delay of Δ t [1] is recorded and the amplitude of each pulse is detected. This cycle is repeated many times while varying Δ t [ k ] until the required time-delay density is obtained. If the pump pulse and the probe-pulse train are asynchronous, the method becomes the RIPT method.

Fig. 2.
Fig. 2.

Prototype of TA spectrometer for RIPT method. BS1 and BS2 are beam splitters; PD1 and PD2 are fast photodiodes; PD3 and PD4 are detectors with preamplifiers; VND is a continuously variable reflective neutral-density filter. No timing controller is needed to synchronize the probe light source with the pump laser.

Fig. 3.
Fig. 3.

TA results obtained by RIPT method from C 60 solution. (a) Overall TA decay curves at 755 nm (red; T 1 absorption peak), 805 nm (green; isosbestic point), and 985 nm (blue; S 1 absorption peak); (b) subnanosecond results with bin-width of 10 ps ( 200 pumping/bin); (c) time delay from 1 to 5 ns. with bin width of 50 ps ( 100 pumping/bin); (d) time delay up to 50,000 ns; (e) 2D false-color contour plot of TA; (f) TA spectra in the sub-5-ns domain reconstructed from (e). The temporal gap not covered by the conventional TA methods is highlighted in pink in (a) and (c). Bin width was lengthened gradually along the time axis in (a), (d), and (e). For each figure [collected time window, collection time per one decay] were [100 μs, 6 min] for (a) and (d), [200 ns, 37 min] for (b), [200 ns, 4 min] for (c) and [100 μs, 2 min] for (e), respectively. To obtain the whole feature of (e), 177 min were needed.

Fig. 4.
Fig. 4.

Baseline subtraction procedure. Panels (a)–(c) show the simulated output of the detector for the probe-pulse train transmitted through the sample (PD3 in Fig. 2). The bump around time zero seen in each figure is due to the fluorescence of the sample induced by the pump light. Picking up the value just before the rise of each pulse [solid green circles in panels (a)–(c)] which should be zero if no fluorescence enters the detector [open circles in panels (a)–(c)] results in reconstructing a nonzero baseline curve in a “randomly-interleaved” manner when the procedure is repeated many times. If the fluorescence signal is superposed over the probe-pulse trains, then the reconstructed baseline curve reproduces the temporal profile of the fluorescence. By subtracting this profile from each data set from the probe-pulse train [panel (e), which shows an enlarged view of the region highlighted in pink in panels (a) and (f)], the signal due to the fluorescence completely disappears, as shown in panels (f)–(h). After subtracting fluorescence, the peak intensity of each pulse [solid blue circles in panels (f)–(h)] allows the reconstruction of the TA curve, as illustrated in Fig. 1.

Fig. 5.
Fig. 5.

Typical results of fluorescence pollution by the CW method and correction by the RIPT method with highly fluorescent sample, TPP; (a) TA temporal profile at several wavelengths from 460 to 580 nm by the CW method with no fluorescence correction; (b) corresponding TA temporal profile by the RIPT method with fluorescence correction. The temporal gap not covered by the conventional TA methods is highlighted in pink.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T reso = C ( T pump 2 + T probe 2 + T σ 2 ) 1 / 2 ,
I corr ( t d ) = I PD 3 ( t d ) / I PD 4 ( t d ) ,
Δ OD ( t d ) = log 10 [ I ref / I corr ( t d ) ] ,

Metrics