Abstract

In this Letter, an accurate and highly efficient numerical phase aberration compensation method is proposed for digital holographic microscopy. Considering that most parts of the phase aberration resides in the low spatial frequency domain, a Fourier-domain mask is introduced to extract the aberrated frequency components, while rejecting components that are unrelated to the phase aberration estimation. Principal component analysis (PCA) is then performed only on the reduced-sized spectrum, and the aberration terms can be extracted from the first principal component obtained. Finally, by oversampling the reduced-sized aberration terms, the precise phase aberration map is obtained and thus can be compensated by multiplying with its conjugation. Because the phase aberration is estimated from the limited but more relevant raw data, the compensation precision is improved and meanwhile the computation time can be significantly reduced. Experimental results demonstrate that our proposed technique could achieve both high compensating accuracy and robustness compared with other developed compensation methods.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-step phase aberration compensation method based on optimal principal component analysis and subsampling for digital holographic microscopy

Xiangyu Zhang, Jiasong Sun, Zuxin Zhang, Yao Fan, Qian Chen, and Chao Zuo
Appl. Opt. 58(2) 389-397 (2019)

Phase aberration compensation in digital holographic microscopy based on principal component analysis

Chao Zuo, Qian Chen, Weijuan Qu, and Anand Asundi
Opt. Lett. 38(10) 1724-1726 (2013)

Spatial carrier phase-shifting algorithm based on principal component analysis method

Yongzhao Du, Guoying Feng, Hongru Li, J. Vargas, and Shouhuan Zhou
Opt. Express 20(15) 16471-16479 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription