Abstract

Increasing the volumetric imaging speed of light-sheet microscopy will improve its ability to detect fast changes in neural activity. Here, a system is introduced for brain-wide imaging of neural activity in the larval zebrafish by coupling structured illumination with cubic phase extended depth-of-field (EDoF) pupil encoding. This microscope enables faster light-sheet imaging and facilitates arbitrary plane scanning—removing constraints on acquisition speed, alignment tolerances, and physical motion near the sample. The usefulness of this method is demonstrated by performing multi-plane calcium imaging in the fish brain with a 416×832×160  μm field of view at 33 Hz. The optomotor response behavior of the zebrafish is monitored at high speeds, and time-locked correlations of neuronal activity are resolved across its brain.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

22 February 2016: A correction was made to an author name and to the acknowledgment.


OSA Recommended Articles
Compressive light-field microscopy for 3D neural activity recording

Nicolas C. Pégard, Hsiou-Yuan Liu, Nick Antipa, Maximillian Gerlock, Hillel Adesnik, and Laura Waller
Optica 3(5) 517-524 (2016)

Enhancement of image quality and imaging depth with Airy light-sheet microscopy in cleared and non-cleared neural tissue

Jonathan Nylk, Kaley McCluskey, Sanya Aggarwal, Javier A. Tello, and Kishan Dholakia
Biomed. Opt. Express 7(10) 4021-4033 (2016)

Dual-slit confocal light sheet microscopy for in vivo whole-brain imaging of zebrafish

Zhe Yang, Li Mei, Fei Xia, Qingming Luo, Ling Fu, and Hui Gong
Biomed. Opt. Express 6(5) 1797-1811 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription