Abstract
We report the result of achieving a random fiber laser (RFL) with record 200-W-level power output. The highest output power is realized by a simple 120 m long cavity at a working wavelength of 1173 nm while pumping at 1120 nm. The maximum observed optical-to-optical efficiency reaches , which is believed to be the highest value ever reported for RFLs. In addition, numerical calculations on different order Raman Stokes wave thresholds based on the theoretical model are carried out for comparison with the experimental data. The presented work effectively advances the power scalability, and the numerical model well describes the lasing thresholds in such short cavity RFLs.
© 2016 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Tables (2)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Equations (6)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Metrics
You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription