Abstract

We propose a plasmonic nano-optical conveyor belt for peristaltic transport of nano-particles. Instead of illumination from the top, waveguide-coupled excitation is used for trapping particles with a higher degree of precision and flexibility. Graded nano-rods with individual dimensions coded to have resonance at specific wavelengths are incorporated along the waveguide in order to produce spatially addressable hot spots. Consequently, by switching the excitation wavelength sequentially, particles can be transported to adjacent optical traps along the waveguide. The feasibility of this design is analyzed using three-dimensional finite-difference time-domain and Maxwell stress tensor methods. Simulation results show that this system is capable of exciting addressable traps and moving particles in a peristaltic fashion with tens of nanometers resolution. It is the first, to the best of our knowledge, report about a nano-optical conveyor belt with waveguide-coupled excitation, which is very important for scalability and on-chip integration. The proposed approach offers a new design direction for integrated waveguide-based optical manipulation devices and its application in large scale lab-on-a-chip integration.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic graded nano-disks as nano-optical conveyor belt

Zhiwen Kang, Haifei Lu, Jiajie Chen, Kun Chen, Fang Xu, and Ho-Pui Ho
Opt. Express 22(16) 19567-19572 (2014)

Optical pulling force and conveyor belt effect in resonator–waveguide system

Varat Intaraprasonk and Shanhui Fan
Opt. Lett. 38(17) 3264-3267 (2013)

Two-dimensional arbitrary nano-manipulation on a plasmonic metasurface

Min Jiang, Guanghui Wang, Wenhao Xu, Wenbin Ji, Ningmu Zou, Ho-pui Ho, and Xuping Zhang
Opt. Lett. 43(7) 1602-1605 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription