Abstract

We show broadband azimuthal polarization state conversion using an entirely connectorized step-index fiber with a central gold nanowire. This device provides broadband polarization discrimination of the low-loss TE01 fiber mode with respect to all other modes, and converts light into the azimuthal polarization state, resulting in a high beam quality and an azimuthal conversion efficiency of 37%. The device is monolithically integrated into fiber circuitry, representing a new platform for plasmonics and fiber optics and enabling important applications in super-resolution microscopy, laser tweezing, and plasmonic superfocussing.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-dependent coupling in gold-filled dual-core photonic crystal fibers

Peng Li and Jianlin Zhao
Opt. Express 21(5) 5232-5238 (2013)

Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell
Opt. Express 19(13) 12180-12189 (2011)

Plasmon resonances on gold nanowires directly drawn in a step-index fiber

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St.J. Russell
Opt. Lett. 35(15) 2573-2575 (2010)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).
    [Crossref]
  2. S. W. Hell, Nat. Biotechnol. 21, 1347 (2003).
    [Crossref]
  3. F. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, J. Opt. Soc. B 26, 2242 (2009).
    [Crossref]
  4. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
    [Crossref]
  5. X. Chen, V. Sandoghdar, and M. Agio, Nano Lett. 9, 3756 (2009).
    [Crossref]
  6. D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
    [Crossref]
  7. M. Stalder and M. Schadt, Opt. Lett. 21, 1948 (1996).
    [Crossref]
  8. E. Churin, J. Hobfeld, and T. Tschudi, Opt. Commun. 99, 13 (1993).
    [Crossref]
  9. N. Yu, P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
    [Crossref]
  10. M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).
    [Crossref]
  11. A. Snyder and J. Love, Optical Waveguide Theory (Springer, 2012).
  12. T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
    [Crossref]
  13. S. Ramachandran, P. Kristensen, and M. Yan, Opt. Lett. 34, 2525 (2009).
    [Crossref]
  14. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  15. C. Tsao, D. Payne, and W. A. Gambling, J. Opt. Soc. A 6, 555 (1989).
    [Crossref]
  16. I. Malitson, J. Opt. Soc. Am. 55, 1205 (1965).
    [Crossref]
  17. A. Rakić, A. Djurišić, J. Elazar, and M. Majewski, Appl. Opt. 37, 5271 (1998).
    [Crossref]
  18. P. Tien, R. Martin, and S. Riva-Sanseverino, Appl. Phys. Lett. 27, 251 (1975).
    [Crossref]
  19. J. Li, C. Wang, and W. Wang, Appl. Opt. 52, 7759 (2013).
    [Crossref]
  20. P. Uebel, M. Schmidt, M. Scharrer, and P. Russell, New J. Phys. 13, 063016 (2011).
    [Crossref]
  21. Fiber with different parameters, dimensions, and doping levels may be developed with and provided by Heraeus Quarzglas GmbH & Co. KG.: Please contact Stefan Weidlich if interested: Stefan. Weidlich@Heraeus.com.
  22. J. Jackson, Classical Electrodynamics (Wiley, 1998).
  23. H. Lee, M. Schmidt, R. Russell, N. Joly, H. Tyagi, P. Uebel, and P. S. J. Russell, Opt. Express 19, 12180 (2011).
    [Crossref]
  24. B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, Am. J. Phys. 75, 163 (2007).
    [Crossref]

2013 (1)

2011 (4)

P. Uebel, M. Schmidt, M. Scharrer, and P. Russell, New J. Phys. 13, 063016 (2011).
[Crossref]

H. Lee, M. Schmidt, R. Russell, N. Joly, H. Tyagi, P. Uebel, and P. S. J. Russell, Opt. Express 19, 12180 (2011).
[Crossref]

N. Yu, P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[Crossref]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

2009 (4)

S. Ramachandran, P. Kristensen, and M. Yan, Opt. Lett. 34, 2525 (2009).
[Crossref]

Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).
[Crossref]

F. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, J. Opt. Soc. B 26, 2242 (2009).
[Crossref]

X. Chen, V. Sandoghdar, and M. Agio, Nano Lett. 9, 3756 (2009).
[Crossref]

2007 (1)

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, Am. J. Phys. 75, 163 (2007).
[Crossref]

2003 (2)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

S. W. Hell, Nat. Biotechnol. 21, 1347 (2003).
[Crossref]

2002 (1)

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[Crossref]

1998 (1)

1996 (1)

1993 (1)

E. Churin, J. Hobfeld, and T. Tschudi, Opt. Commun. 99, 13 (1993).
[Crossref]

1989 (1)

C. Tsao, D. Payne, and W. A. Gambling, J. Opt. Soc. A 6, 555 (1989).
[Crossref]

1975 (1)

P. Tien, R. Martin, and S. Riva-Sanseverino, Appl. Phys. Lett. 27, 251 (1975).
[Crossref]

1972 (1)

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[Crossref]

1965 (1)

Agio, M.

X. Chen, V. Sandoghdar, and M. Agio, Nano Lett. 9, 3756 (2009).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[Crossref]

Barrett, D.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, Am. J. Phys. 75, 163 (2007).
[Crossref]

Beresna, M.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Capasso, F.

N. Yu, P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[Crossref]

Chen, X.

X. Chen, V. Sandoghdar, and M. Agio, Nano Lett. 9, 3756 (2009).
[Crossref]

Churin, E.

E. Churin, J. Hobfeld, and T. Tschudi, Opt. Commun. 99, 13 (1993).
[Crossref]

Collett, E.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, Am. J. Phys. 75, 163 (2007).
[Crossref]

Courjon, D.

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[Crossref]

Djurišic, A.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

Elazar, J.

Fraher, B.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, Am. J. Phys. 75, 163 (2007).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[Crossref]

Gambling, W. A.

C. Tsao, D. Payne, and W. A. Gambling, J. Opt. Soc. A 6, 555 (1989).
[Crossref]

Gecevicius, M.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[Crossref]

Gertus, T.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Grosjean, T.

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[Crossref]

Hell, S. W.

S. W. Hell, Nat. Biotechnol. 21, 1347 (2003).
[Crossref]

Hobfeld, J.

E. Churin, J. Hobfeld, and T. Tschudi, Opt. Commun. 99, 13 (1993).
[Crossref]

Jackson, J.

J. Jackson, Classical Electrodynamics (Wiley, 1998).

Joly, N.

Kats, M.

N. Yu, P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[Crossref]

Kazansky, P. G.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Kristensen, P.

Lee, H.

Lei, M.

F. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, J. Opt. Soc. B 26, 2242 (2009).
[Crossref]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

Li, J.

Love, J.

A. Snyder and J. Love, Optical Waveguide Theory (Springer, 2012).

Majewski, M.

Malitson, I.

Martin, R.

P. Tien, R. Martin, and S. Riva-Sanseverino, Appl. Phys. Lett. 27, 251 (1975).
[Crossref]

Payne, D.

C. Tsao, D. Payne, and W. A. Gambling, J. Opt. Soc. A 6, 555 (1989).
[Crossref]

Peng, F.

F. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, J. Opt. Soc. B 26, 2242 (2009).
[Crossref]

Pohl, D.

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[Crossref]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

Rakic, A.

Ramachandran, S.

Riva-Sanseverino, S.

P. Tien, R. Martin, and S. Riva-Sanseverino, Appl. Phys. Lett. 27, 251 (1975).
[Crossref]

Russell, P.

P. Uebel, M. Schmidt, M. Scharrer, and P. Russell, New J. Phys. 13, 063016 (2011).
[Crossref]

Russell, P. S. J.

Russell, R.

Sandoghdar, V.

X. Chen, V. Sandoghdar, and M. Agio, Nano Lett. 9, 3756 (2009).
[Crossref]

Schadt, M.

Schaefer, B.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, Am. J. Phys. 75, 163 (2007).
[Crossref]

Scharrer, M.

P. Uebel, M. Schmidt, M. Scharrer, and P. Russell, New J. Phys. 13, 063016 (2011).
[Crossref]

Schmidt, M.

Smyth, R.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, Am. J. Phys. 75, 163 (2007).
[Crossref]

Snyder, A.

A. Snyder and J. Love, Optical Waveguide Theory (Springer, 2012).

Spajer, M.

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[Crossref]

Stalder, M.

Tetienne, J.

N. Yu, P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[Crossref]

Tien, P.

P. Tien, R. Martin, and S. Riva-Sanseverino, Appl. Phys. Lett. 27, 251 (1975).
[Crossref]

Tsao, C.

C. Tsao, D. Payne, and W. A. Gambling, J. Opt. Soc. A 6, 555 (1989).
[Crossref]

Tschudi, T.

E. Churin, J. Hobfeld, and T. Tschudi, Opt. Commun. 99, 13 (1993).
[Crossref]

Tyagi, H.

Uebel, P.

Wang, C.

Wang, W.

Yan, M.

Yan, S.

F. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, J. Opt. Soc. B 26, 2242 (2009).
[Crossref]

Yao, B.

F. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, J. Opt. Soc. B 26, 2242 (2009).
[Crossref]

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Yu, N.

N. Yu, P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[Crossref]

Zhan, Q.

Zhao, W.

F. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, J. Opt. Soc. B 26, 2242 (2009).
[Crossref]

Adv. Opt. Photon. (1)

Am. J. Phys. (1)

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, Am. J. Phys. 75, 163 (2007).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

P. Tien, R. Martin, and S. Riva-Sanseverino, Appl. Phys. Lett. 27, 251 (1975).
[Crossref]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[Crossref]

J. Opt. Soc. A (1)

C. Tsao, D. Payne, and W. A. Gambling, J. Opt. Soc. A 6, 555 (1989).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. B (1)

F. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, J. Opt. Soc. B 26, 2242 (2009).
[Crossref]

Nano Lett. (1)

X. Chen, V. Sandoghdar, and M. Agio, Nano Lett. 9, 3756 (2009).
[Crossref]

Nat. Biotechnol. (1)

S. W. Hell, Nat. Biotechnol. 21, 1347 (2003).
[Crossref]

New J. Phys. (1)

P. Uebel, M. Schmidt, M. Scharrer, and P. Russell, New J. Phys. 13, 063016 (2011).
[Crossref]

Opt. Commun. (2)

E. Churin, J. Hobfeld, and T. Tschudi, Opt. Commun. 99, 13 (1993).
[Crossref]

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

Science (1)

N. Yu, P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[Crossref]

Other (4)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

A. Snyder and J. Love, Optical Waveguide Theory (Springer, 2012).

Fiber with different parameters, dimensions, and doping levels may be developed with and provided by Heraeus Quarzglas GmbH & Co. KG.: Please contact Stefan Weidlich if interested: Stefan. Weidlich@Heraeus.com.

J. Jackson, Classical Electrodynamics (Wiley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Gold NW enhanced step-index fiber device schematic: LP light propagates through the unfilled fiber (i) and couples to the gold-filled fiber modes over a finite transition region (ii a), resulting in AP light at the output due to the loss discrimination between T E 01 modes and all other supported modes in region (ii b). This device is then spliced to a commercial single-mode fiber (SMF). Inset: SEM micrograph of a gold-filled nanobore fiber end-face.
Fig. 2.
Fig. 2. (a) Calculated axial Poynting vector profiles (normalized log scale) for the supported modes of the gold-filled step index fiber at 600 nm. White arrows are snapshots of the electric field. (b) Absorption coefficient γ of the gold-filled fiber modes calculated from the complex eigenvalue equation (solid lines) and from the integral on the right-handed side of Eq. (1) (circles).
Fig. 3.
Fig. 3. (a) Experimental setup schematic. (b) Transmission spectra of the empty (unfilled) and gold-filled fiber. (c) Loss of the T E 01 mode (right axis) and loss discrimination with respect to other modes (left axis). Circles show the experimentally measured cut-back loss.
Fig. 4.
Fig. 4. (a) Schematic of experimental setup. Different band-pass filters (BPF) and a polarizer are placed after fiber output. Modal images are measured with a CCD camera. (b) Experimental modal images for different filter wavelengths. Black arrows indicate the orientations of the polarizer. Background colors (yellow and light blue) correspond to the wavelength regions shown in Fig. 2. Angle values refer to Δ ψ ¯ as defined in the text.
Fig. 5.
Fig. 5. (a) Scattered light at the boundary between the unfilled and gold-filled region of the step-index fiber ( λ = 650 nm ). An initial transition region of the 6 mm length with irregular light scattering is followed by a region of regular scattering. Point A and B respectively represent the beginning and the end of the gold-NW transition region over which modal conversion occurs. (b) Microscope image of the first section of the transition region. The gold wire begins with the white vertical dotted line. (c) Launching efficiency of the AP beam (left axis), and estimated modal conversion efficiency (right axis).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ = ε 0 μ 0 2 π λ 1 2 P ε I ( x , y ) | E | 2 d x d y ,

Metrics