Abstract

Stable low-noise high-power lasers are indispensable in advancing the strain sensitivity of interferometric gravitational wave detectors. Advanced LIGO and Advanced Virgo are currently under commissioning and require about 200 W of single-frequency laser power, while the future detector design may require up to the order of 500 W. In this Letter, we present the design and, to the best of our knowledge, the first experimental demonstration of the laser system for Advanced Virgo that is based on coherently combined fiber laser amplifiers. We show the long-term performance of two 40 W fiber laser amplifiers, as well as their characterization in terms of beam quality, power noise, phase noise, and beam pointing. Moreover, a simple and compact setup utilizing fibered modulators and actuators for the coherent beam combination of these two fiber laser amplifiers is reported. A combination efficiency of about 96% was achieved, and no spurious noise was observed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coherent combining technology of master oscillator power amplifier fiber arrays

R. Xiao, J. Hou, M. liu, and Z. F. Jiang
Opt. Express 16(3) 2015-2022 (2008)

Power scaling of a fiber master oscillator power amplifier system using a coherent polarization beam combination

Radoslaw Uberna, Andrew Bratcher, and Bruce G. Tiemann
Appl. Opt. 49(35) 6762-6765 (2010)

Single-frequency linearly polarized master-oscillator fiber power amplifier system and its application in high fill factor coherent beam combining

Yunfeng Qi, Chi Liu, Jun Zhou, Qihong Lou, Weibiao Chen, Jingxing Dong, and Yunrong Wei
Appl. Opt. 48(29) 5514-5519 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Caves, Phys. Rev. D 23, 1693 (1981).
    [Crossref]
  2. LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 116, 061102 (2016).
    [Crossref]
  3. LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 116, 241103 (2016).
    [Crossref]
  4. LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. X 6, 041015 (2016).
  5. P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King, J. Pöld, O. Puncken, R. L. Savage, F. Seifert, P. Wessels, L. Winkelmann, and B. Willke, Opt. Express 20, 10617 (2012).
    [Crossref]
  6. Virgo Collaboration, Class. Quantum Grav. 32, 024001 (2015).
    [Crossref]
  7. S. J. Augst, T. Y. Fan, and A. Sanchez, Opt. Lett. 29, 474 (2004).
    [Crossref]
  8. S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, J. Opt. Soc. Am. B 24, 1707 (2007).
    [Crossref]
  9. H. Tünnermann, J. H. Pöld, J. Neumann, D. Kracht, B. Willke, and P. Weßels, Opt. Express 19, 19600 (2011).
    [Crossref]
  10. Virgo Collaboration, “Advanced Virgo technical design report,” (2012).
  11. A. Chiummo, “Requirements for technical noise with ITF asymmetries,” (The Virgo Collaboration, 2011).
  12. R. Gouaty, “Laser RIN specifications at Advanced Virgo modulation frequencies,” (The Virgo Collaboration, 2013).
  13. P. Kwee and B. Willke, Appl. Opt. 47, 6022 (2008).
    [Crossref]
  14. I. Zawischa, K. Plamann, C. Fallnich, H. Welling, H. Zellmer, and A. Tünnermann, Opt. Lett. 24, 469 (1999).
    [Crossref]
  15. A. Liem, J. Limpert, H. Zellmer, and A. Tünnermann, Opt. Lett. 28, 1537 (2003).
    [Crossref]
  16. T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, IEEE Photon. Technol. Lett. 24, 1864 (2012).
    [Crossref]
  17. G. Guiraud, N. Traynor, and G. Santarelli, Opt. Lett. 41, 4040 (2016).
    [Crossref]
  18. N. Traynor, Azur Light Systems, 11 Avenue de Canteranne, 33600 Pessac, France (personal communication, 2015).
  19. E. Morrison, B. J. Meers, D. I. Robertson, and H. Ward, Appl. Opt. 33, 5041 (1994).
    [Crossref]
  20. ET Science Team, “Einstein gravitational wave telescope conceptual design study,” (2011).
  21. M. Ganija, D. Ottaway, P. Veitch, and J. Munch, Opt. Express 21, 6973 (2013).
    [Crossref]

2016 (4)

LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]

LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 116, 241103 (2016).
[Crossref]

LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. X 6, 041015 (2016).

G. Guiraud, N. Traynor, and G. Santarelli, Opt. Lett. 41, 4040 (2016).
[Crossref]

2015 (1)

Virgo Collaboration, Class. Quantum Grav. 32, 024001 (2015).
[Crossref]

2013 (1)

2012 (2)

2011 (1)

2008 (1)

2007 (1)

2004 (1)

2003 (1)

1999 (1)

1994 (1)

1981 (1)

C. M. Caves, Phys. Rev. D 23, 1693 (1981).
[Crossref]

Augst, S. J.

Bogan, C.

Caves, C. M.

C. M. Caves, Phys. Rev. D 23, 1693 (1981).
[Crossref]

Chiummo, A.

A. Chiummo, “Requirements for technical noise with ITF asymmetries,” (The Virgo Collaboration, 2011).

Danzmann, K.

Fallnich, C.

Fan, T. Y.

Frede, M.

Ganija, M.

Gouaty, R.

R. Gouaty, “Laser RIN specifications at Advanced Virgo modulation frequencies,” (The Virgo Collaboration, 2013).

Guiraud, G.

Kim, H.

King, P.

Kracht, D.

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, IEEE Photon. Technol. Lett. 24, 1864 (2012).
[Crossref]

H. Tünnermann, J. H. Pöld, J. Neumann, D. Kracht, B. Willke, and P. Weßels, Opt. Express 19, 19600 (2011).
[Crossref]

Kwee, P.

Liem, A.

Limpert, J.

Meers, B. J.

Morrison, E.

Munch, J.

Neumann, J.

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, IEEE Photon. Technol. Lett. 24, 1864 (2012).
[Crossref]

H. Tünnermann, J. H. Pöld, J. Neumann, D. Kracht, B. Willke, and P. Weßels, Opt. Express 19, 19600 (2011).
[Crossref]

Ottaway, D.

Plamann, K.

Pöld, J.

Pöld, J. H.

Puncken, O.

Ranka, J. K.

Robertson, D. I.

Sanchez, A.

Santarelli, G.

Savage, R. L.

Sayinc, H.

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, IEEE Photon. Technol. Lett. 24, 1864 (2012).
[Crossref]

Seifert, F.

Theeg, T.

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, IEEE Photon. Technol. Lett. 24, 1864 (2012).
[Crossref]

Traynor, N.

G. Guiraud, N. Traynor, and G. Santarelli, Opt. Lett. 41, 4040 (2016).
[Crossref]

N. Traynor, Azur Light Systems, 11 Avenue de Canteranne, 33600 Pessac, France (personal communication, 2015).

Tünnermann, A.

Tünnermann, H.

Veitch, P.

Ward, H.

Welling, H.

Wessels, P.

Weßels, P.

Willke, B.

Winkelmann, L.

Zawischa, I.

Zellmer, H.

Appl. Opt. (2)

Class. Quantum Grav. (1)

Virgo Collaboration, Class. Quantum Grav. 32, 024001 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, IEEE Photon. Technol. Lett. 24, 1864 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. D (1)

C. M. Caves, Phys. Rev. D 23, 1693 (1981).
[Crossref]

Phys. Rev. Lett. (2)

LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]

LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 116, 241103 (2016).
[Crossref]

Phys. Rev. X (1)

LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. X 6, 041015 (2016).

Other (5)

Virgo Collaboration, “Advanced Virgo technical design report,” (2012).

A. Chiummo, “Requirements for technical noise with ITF asymmetries,” (The Virgo Collaboration, 2011).

R. Gouaty, “Laser RIN specifications at Advanced Virgo modulation frequencies,” (The Virgo Collaboration, 2013).

N. Traynor, Azur Light Systems, 11 Avenue de Canteranne, 33600 Pessac, France (personal communication, 2015).

ET Science Team, “Einstein gravitational wave telescope conceptual design study,” (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Advanced Virgo laser system design features coherently combined fiber laser amplifiers seeded with an NPRO.

Fig. 2.
Fig. 2.

Output power time series of the fiber laser amplifiers.

Fig. 3.
Fig. 3.

Exemplary output power time series of the fiber laser amplifiers on start. The missing part between the two solid traces for Amplifier 2 was due to its shutdown.

Fig. 4.
Fig. 4.

Relative power noise spectrum of Amplifier 2. The scattered measurements were already convergent rms averages.

Fig. 5.
Fig. 5.

Frequency noise spectrum of Amplifier 2. The measurement floor was calculated by the coupling of the asymmetry of about 20 m and typical NPRO frequency noise, and calibrated using a fiber. The measured phase noise of the fiber laser amplifier was found to originate largely from the preamplifier stage.

Fig. 6.
Fig. 6.

Beam pointing fluctuation spectrum of Amplifier 2.

Fig. 7.
Fig. 7.

Schematic of the coherent beam combination setup. The fiber EOM (Photline NIR-MPX-LN0.1) generates the 14 MHz sideband, and serves as the fast actuator for the phase lock loop. The piezo-driven fiber stretcher (Optiphase PZ1-PM1) increases the dynamic range. Mode-matching was done by equating the distances between the fiber laser amplifiers and the 50/50 beam-splitter (BS1). A pick-off plate (BS2) was used to direct some power to the photodiode from the bright fringe. M: mirror. The phase lock loop had a first-order transfer function with >1  MHz unity gain frequency.

Fig. 8.
Fig. 8.

Differential phase drift between Amplifier 2 and a fiber (left), and that between Amplifiers 1 and 2 (right). Dashed line, raw data; dotted line, dynamic range; solid line, stitched data.

Fig. 9.
Fig. 9.

Relative power noise spectrum of the combined beam.

Fig. 10.
Fig. 10.

Beam pointing fluctuation spectrum of the combined beam (dashed gray); Amplifier 1 (dotted line) and Amplifier 2 (solid line) versus Advanced Virgo requirements (dashed black).

Metrics