Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Characterization of few-fs deep-UV dispersive waves by ultra-broadband transient-grating XFROG

Not Accessible

Your library or personal account may give you access

Abstract

A multi-shot transient-grating cross-correlation frequency-resolved optical gating (FROG) is implemented for the characterization of nanojoule-scale, few-femtosecond, deep-ultraviolet pulses. In theory, the system can characterize pulses with a bandwidth extending from below 200 nm to above 1.5 μm. It is experimentally shown that a 200 THz (50 nm) wide dispersive wave centered at 275 nm, generated in a gas-filled HC-PCF, has a temporal duration of 4 fs. The numerical simulations agree well with the experiment. The results confirm that dispersive wave emission in a gas-filled HC-PCF can be used as a novel source of ultrashort UV pulses in a range of applications, for example, ultrafast UV pump-probe spectroscopy.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Direct characterization of tuneable few-femtosecond dispersive-wave pulses in the deep UV

Christian Brahms, Dane R. Austin, Francesco Tani, Allan S. Johnson, Douglas Garratt, John C. Travers, John W. G. Tisch, Philip St.J. Russell, and Jon P. Marangos
Opt. Lett. 44(4) 731-734 (2019)

Full characterization of 8  fs deep UV pulses via a dispersion scan

Ayhan Tajalli, Thomas K. Kalousdian, Martin Kretschmar, Sven Kleinert, Uwe Morgner, and Tamas Nagy
Opt. Lett. 44(10) 2498-2501 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.