Abstract

We report on, to the best of our knowledge, the first singly resonant (SR), synchronously pumped optical parametric oscillator (OPO) based on orientation-patterned gallium arsenide (OP-GaAs). Together with a doubly resonant (DR) degenerate OPO based on the same OP-GaAs material, the output spectra cover 3 to 6 μm within 3  dB of relative power. The DR-OPO has the highest output power reported to date from a femtosecond, synchronously pumped OPO based on OP-GaAs. We observed strong three-photon absorption with a coefficient of 0.35±0.08  cm3/GW2 for our OP-GaAs sample, which limits the output power of these OPOs as mid-IR light sources. We present a detailed study of the three-photon loss on the performance of both the SR- and DR-OPOs, and compare them to those without this loss mechanism.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
1.95  μm-pumped OP-GaAs optical parametric oscillator with 10.6  μm idler wavelength

Jochen Wueppen, Sebastian Nyga, Bernd Jungbluth, and Dieter Hoffmann
Opt. Lett. 41(18) 4225-4228 (2016)

Optical parametric oscillation in quasi-phase-matched GaAs

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier
Opt. Lett. 29(16) 1912-1914 (2004)

Mid-IR frequency comb source spanning 4.4–5.4 μm based on subharmonic GaAs optical parametric oscillator

K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann
Opt. Lett. 36(12) 2275-2277 (2011)

References

  • View by:
  • |
  • |
  • |

  1. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, Opt. Lett. 34, 1330 (2009).
    [Crossref]
  2. A. Schliesser, N. Picque, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
    [Crossref]
  3. B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, Nature 533, 517 (2016).
    [Crossref]
  4. V. O. Smolski, S. Vasilyev, P. G. Schunemann, S. B. Mirov, and K. L. Vodopyanov, Opt. Lett. 40, 2906 (2015).
    [Crossref]
  5. V. Petrov, Prog. Quantum Electron. 42, 1 (2015).
    [Crossref]
  6. B. Metzger, B. Pollard, I. Rimke, E. Büttner, and M. B. Raschke, Opt. Lett. 41, 4383 (2016).
    [Crossref]
  7. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, J. Appl. Phys. 94, 6447 (2003).
    [Crossref]
  8. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer-Verlag, 2005).
  9. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. F. Bliss, and D. Weyburne, Opt. Lett. 32, 2735 (2007).
    [Crossref]
  10. W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, Opt. Lett. 32, 668 (2007).
    [Crossref]
  11. J. He, Y. Qu, H. Li, J. Mi, and W. Ji, Opt. Express 13, 9235 (2005).
    [Crossref]
  12. S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, Appl. Phys. Lett. 68, 2544 (1996).
    [Crossref]
  13. L. P. Gonzalez, J. Murray, A. Carpenter, D. Upchurch, J. O. Barnes, P. G. Schunemann, K. Zawilski, and S. Guha, Nonlinear Freq. Gener. Convers. Mater. Devices, Appl. IX 7582, 75821A (2010).
  14. S. Pearl, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 93, 131102 (2008).
    [Crossref]
  15. M. J. McCarthy and D. C. Hanna, J. Opt. Soc. Am. B 10, 2180 (1993).
    [Crossref]
  16. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  17. V. O. Smolski, H. Yang, S. D. Gorelov, P. G. Schunemann, and K. L. Vodopyanov, Opt. Lett. 41, 1388 (2016).
    [Crossref]
  18. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, Opt. Express 20, 7046 (2012).
    [Crossref]
  19. L. Maidment, P. G. Schunemann, and D. T. Reid, Opt. Lett. 41, 4261 (2016).
    [Crossref]

2016 (4)

2015 (2)

2012 (2)

2010 (1)

L. P. Gonzalez, J. Murray, A. Carpenter, D. Upchurch, J. O. Barnes, P. G. Schunemann, K. Zawilski, and S. Guha, Nonlinear Freq. Gener. Convers. Mater. Devices, Appl. IX 7582, 75821A (2010).

2009 (1)

2008 (1)

S. Pearl, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 93, 131102 (2008).
[Crossref]

2007 (2)

2005 (1)

2003 (1)

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, J. Appl. Phys. 94, 6447 (2003).
[Crossref]

1996 (1)

S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, Appl. Phys. Lett. 68, 2544 (1996).
[Crossref]

1993 (1)

Adler, F.

Barnes, J. O.

L. P. Gonzalez, J. Murray, A. Carpenter, D. Upchurch, J. O. Barnes, P. G. Schunemann, K. Zawilski, and S. Guha, Nonlinear Freq. Gener. Convers. Mater. Devices, Appl. IX 7582, 75821A (2010).

Becouarn, L.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, J. Appl. Phys. 94, 6447 (2003).
[Crossref]

Benjamin, S. D.

S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, Appl. Phys. Lett. 68, 2544 (1996).
[Crossref]

Bjork, B. J.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, Nature 533, 517 (2016).
[Crossref]

Bliss, D. F.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Büttner, E.

Byer, R. L.

Carpenter, A.

L. P. Gonzalez, J. Murray, A. Carpenter, D. Upchurch, J. O. Barnes, P. G. Schunemann, K. Zawilski, and S. Guha, Nonlinear Freq. Gener. Convers. Mater. Devices, Appl. IX 7582, 75821A (2010).

Changala, P. B.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, Nature 533, 517 (2016).
[Crossref]

Cossel, K. C.

Doyle, J. M.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, Nature 533, 517 (2016).
[Crossref]

Eyres, L. A.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, J. Appl. Phys. 94, 6447 (2003).
[Crossref]

Fejer, M. M.

W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, Opt. Lett. 32, 668 (2007).
[Crossref]

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. F. Bliss, and D. Weyburne, Opt. Lett. 32, 2735 (2007).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, J. Appl. Phys. 94, 6447 (2003).
[Crossref]

Fermann, M.

Fermann, M. E.

Gerard, B.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, J. Appl. Phys. 94, 6447 (2003).
[Crossref]

Gonzalez, L. P.

L. P. Gonzalez, J. Murray, A. Carpenter, D. Upchurch, J. O. Barnes, P. G. Schunemann, K. Zawilski, and S. Guha, Nonlinear Freq. Gener. Convers. Mater. Devices, Appl. IX 7582, 75821A (2010).

Gorelov, S. D.

Guha, S.

L. P. Gonzalez, J. Murray, A. Carpenter, D. Upchurch, J. O. Barnes, P. G. Schunemann, K. Zawilski, and S. Guha, Nonlinear Freq. Gener. Convers. Mater. Devices, Appl. IX 7582, 75821A (2010).

Hanna, D. C.

Hänsch, T. W.

A. Schliesser, N. Picque, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

Harris, J. S.

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. F. Bliss, and D. Weyburne, Opt. Lett. 32, 2735 (2007).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, J. Appl. Phys. 94, 6447 (2003).
[Crossref]

Hartl, I.

He, J.

Heckl, O. H.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, Nature 533, 517 (2016).
[Crossref]

Hurlbut, W. C.

Ji, W.

Jiang, J.

Kuo, P. S.

W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, Opt. Lett. 32, 668 (2007).
[Crossref]

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. F. Bliss, and D. Weyburne, Opt. Lett. 32, 2735 (2007).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, J. Appl. Phys. 94, 6447 (2003).
[Crossref]

Lallier, E.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, J. Appl. Phys. 94, 6447 (2003).
[Crossref]

Lee, Y.-S.

Leindecker, N.

Levi, O.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, J. Appl. Phys. 94, 6447 (2003).
[Crossref]

Li, H.

Loka, H. S.

S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, Appl. Phys. Lett. 68, 2544 (1996).
[Crossref]

Maidment, L.

Marandi, A.

McCarthy, M. J.

Metzger, B.

Mi, J.

Mirov, S. B.

Murray, J.

L. P. Gonzalez, J. Murray, A. Carpenter, D. Upchurch, J. O. Barnes, P. G. Schunemann, K. Zawilski, and S. Guha, Nonlinear Freq. Gener. Convers. Mater. Devices, Appl. IX 7582, 75821A (2010).

Nikogosyan, D. N.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer-Verlag, 2005).

Othonos, A.

S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, Appl. Phys. Lett. 68, 2544 (1996).
[Crossref]

Patterson, D.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, Nature 533, 517 (2016).
[Crossref]

Pearl, S.

S. Pearl, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 93, 131102 (2008).
[Crossref]

Petrov, V.

V. Petrov, Prog. Quantum Electron. 42, 1 (2015).
[Crossref]

Picque, N.

A. Schliesser, N. Picque, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

Pinguet, T. J.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, J. Appl. Phys. 94, 6447 (2003).
[Crossref]

Pollard, B.

Qu, Y.

Raschke, M. B.

Reid, D. T.

Rimke, I.

Rotenberg, N.

S. Pearl, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 93, 131102 (2008).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picque, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

Schunemann, P. G.

Skauli, T.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, J. Appl. Phys. 94, 6447 (2003).
[Crossref]

Smith, P. W. E.

S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, Appl. Phys. Lett. 68, 2544 (1996).
[Crossref]

Smolski, V. O.

Spaun, B.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, Nature 533, 517 (2016).
[Crossref]

Thorpe, M. J.

Upchurch, D.

L. P. Gonzalez, J. Murray, A. Carpenter, D. Upchurch, J. O. Barnes, P. G. Schunemann, K. Zawilski, and S. Guha, Nonlinear Freq. Gener. Convers. Mater. Devices, Appl. IX 7582, 75821A (2010).

van Driel, H. M.

S. Pearl, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 93, 131102 (2008).
[Crossref]

Vasilyev, S.

Vodopyanov, K. L.

Weyburne, D.

Yang, H.

Ye, J.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, Nature 533, 517 (2016).
[Crossref]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, Opt. Lett. 34, 1330 (2009).
[Crossref]

Yu, X.

Zawilski, K.

L. P. Gonzalez, J. Murray, A. Carpenter, D. Upchurch, J. O. Barnes, P. G. Schunemann, K. Zawilski, and S. Guha, Nonlinear Freq. Gener. Convers. Mater. Devices, Appl. IX 7582, 75821A (2010).

Appl. Phys. Lett. (2)

S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, Appl. Phys. Lett. 68, 2544 (1996).
[Crossref]

S. Pearl, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 93, 131102 (2008).
[Crossref]

J. Appl. Phys. (1)

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, J. Appl. Phys. 94, 6447 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

A. Schliesser, N. Picque, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

Nature (1)

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, Nature 533, 517 (2016).
[Crossref]

Nonlinear Freq. Gener. Convers. Mater. Devices, Appl. IX (1)

L. P. Gonzalez, J. Murray, A. Carpenter, D. Upchurch, J. O. Barnes, P. G. Schunemann, K. Zawilski, and S. Guha, Nonlinear Freq. Gener. Convers. Mater. Devices, Appl. IX 7582, 75821A (2010).

Opt. Express (2)

Opt. Lett. (7)

Prog. Quantum Electron. (1)

V. Petrov, Prog. Quantum Electron. 42, 1 (2015).
[Crossref]

Other (2)

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer-Verlag, 2005).

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Setup of the SR- and DR-OPO. A telescope matches a 1.95 μm, 110 MHz mode-locked laser to a standing wave cavity formed by M1–M4. An OP-GaAs crystal is placed at the cavity focus between the focusing mirrors M2 and M3 [radius of curvature (ROC) of 50 mm] with a waist size of 21    μm ( 1 / e 2 intensity radius). SR-OPO: M1 and M4 highly transmissive (HT) for the pump and highly reflective (HR) for the signal wavelength (2.5–3.1 μm). M4 output couples the idler wavelength ( T > 85 % ). DR-OPO: M1 is HR at 3.0–6.6 μm with 80% pump transmission, and M4 is a broadband gold mirror. Light is coupled out of the OPO at the sapphire Brewster plate.

Fig. 2.
Fig. 2.

Output power versus pump power for (a) the SR-OPO and (b) the DR-OPO. The red dashed lines indicate the output power of the OPOs without 3PA. The blue circles are the measured output power, and the blue solid line is the calculated output power based on our measurements for the 3PA coefficient and the threshold of the OPOs.

Fig. 3.
Fig. 3.

Top: Z -scan measured in the patterned region of a 58 μm QPM-period OP-GaAs crystal. This measurement reveals a 3PA coefficient of 0.35 ± 0.08    cm 3 / GW 2 . Bottom: microscope image of the measured crystal. Typical OP-GaAs crystals offer a 2 mm by 1 mm surface area and a thickness around 500 μm.

Fig. 4.
Fig. 4.

Spectra of the pump laser (black circles), the output of DR-OPO (green, inverted pyramids), signal of SR-OPO (blue squares), and the idler of the SR-OPO (red pyramids). The spectrum of the pump laser was measured with a commercial mid-IR spectrometer. The remaining spectra were measured with a monochromator and a mid-IR photodiode.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

g 2 L eff 2 = 2 l = 2 ( l 0 + l 3 PA ) .
g 2 = 8 π 2 d eff 2 P av n p n s n i λ s λ i c ϵ 0 f rep τ p w 0 2 π τ p 2 τ p 2 + τ s 2 .
P out , 3 PA = D SR , i ( P in P th , 3 PA ) = D SR , i ( P in P th , no 3 PA b P in 2 ) ,
P out , no 3 PA = D η OC l tot , th ( P in P th ) .
g 2 L eff 2 = l 2 .
P out , 3 PA = D DR η OC l tot + l 3 PA ( P in P th , 3 PA ) .

Metrics