Abstract

A supercontinuum laser source was designed for multiplex-coherent anti-Stokes Raman scattering spectroscopy. This source was based on the use of a germanium-doped standard optical fiber with a zero dispersion wavelength at 1600 nm and pumped at 1064 nm. We analyzed the nonlinear spectro-temporal interrelations of a subnanosecond pulse propagating in a normal dispersion regime in the presence of a multiple Raman cascading process and strong conversion. The multiple Raman orders permitted the generation of a high-power flat spectrum with a specific nonlinear dynamics that can open the way to subnanosecond time-coded multiplex CARS systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Limits of coherent supercontinuum generation in normal dispersion fibers

Alexander M. Heidt, James S. Feehan, Jonathan H. V. Price, and Thomas Feurer
J. Opt. Soc. Am. B 34(4) 764-775 (2017)

Raman cascade suppression by using wide band parametric conversion in large normal dispersion regime

Vincent Couderc, Philippe Leproux, Vincent Tombelaine, Ludovic Grossard, and A. Barthélémy
Opt. Express 13(21) 8584-8590 (2005)

Supercontinuum generation by stimulated Raman–Kerr scattering in a liquid-core optical fiber

Gil Fanjoux, Samuel Margueron, Jean-Charles Beugnot, and Thibaut Sylvestre
J. Opt. Soc. Am. B 34(8) 1677-1683 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription