Abstract

A simple method of high-speed random bit generation is presented that utilizes the turbulent output of a fiber ring cavity semiconductor laser. Random bits are generated by multi-bit sampling of the chaotic optical waveform passed through a simple post-processing procedure, leading to generation rates up to and potentially exceeding 1 Tb/s. The resulting random bit streams are tested statistically using a software package designed to test random number generators, the NIST statistical test suite. The bit streams pass each of these test sets, indicating their suitability for use in random number generation applications. This novel technique allows the generation of random bits from less complex experimental conditions than previously reported, while improving upon recent previous studies in terms of bit rate and quality of bits.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Fully photonics-based physical random bit generator

Pu Li, Yuanyuan Sun, Xianglian Liu, Xiaogang Yi, Jianguo Zhang, Xiaomin Guo, Yanqiang Guo, and Yuncai Wang
Opt. Lett. 41(14) 3347-3350 (2016)

Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser

Nianqiang Li, Byungchil Kim, V. N. Chizhevsky, A. Locquet, M. Bloch, D. S. Citrin, and Wei Pan
Opt. Express 22(6) 6634-6646 (2014)

Quantum random number generator using a microresonator-based Kerr oscillator

Yoshitomo Okawachi, Mengjie Yu, Kevin Luke, Daniel O. Carvalho, Michal Lipson, and Alexander L. Gaeta
Opt. Lett. 41(18) 4194-4197 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription