Abstract

We demonstrate continuous tuning of the squeezing-level generated in a double-ring optical parametric oscillator by externally controlling the coupling condition using electrically controlled integrated microheaters. We accomplish this by utilizing the avoided crossing exhibited by a pair of coupled silicon nitride microring resonators. We directly detect a change in the squeezing level from 0.5 dB in the undercoupled regime to 2 dB in the overcoupled regime, which corresponds to a change in the generated on-chip squeezing factor from 0.9 to 3.9 dB. Such wide tunability in the squeezing level can be harnessed for on-chip quantum-enhanced sensing protocols that require an optimal degree of squeezing.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dark-state lasers: mode management using exceptional points

H. Hodaei, A. U. Hassan, W. E. Hayenga, M. A. Miri, D. N. Christodoulides, and M. Khajavikhan
Opt. Lett. 41(13) 3049-3052 (2016)

Widely tunable Vernier ring laser on hybrid silicon

J. C. Hulme, J. K. Doylend, and J. E. Bowers
Opt. Express 21(17) 19718-19722 (2013)

Four-wave mixing in silicon coupled-cavity resonators with port-selective, orthogonal supermode excitation

Xiaoge Zeng, Cale M. Gentry, and Miloš A. Popović
Opt. Lett. 40(9) 2120-2123 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription