Abstract

As the diffraction limit is approached, device miniaturization to integrate more functionality per area becomes more and more challenging. Here we propose a strategy to increase the functionality-per-area by exploiting the modal properties of a waveguide system. With such an approach the design of a mode-multiplexed nanophotonic modulator relying on the mode-selective absorption of a patterned indium-tin-oxide (ITO) is proposed. Full-wave simulations of a device operating at the telecom wavelength of 1550 nm show that two modes can be independently modulated, while maintaining performances in line with conventional single-mode ITO modulators reported in the recent literature. The proposed design principles can pave the way to a class of mode-multiplexed compact photonic devices able to effectively multiply the functionality-per-area in integrated photonic systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct-detection mode-division multiplexing in modal basis using phase retrieval

Sercan Ö. Arik and Joseph M. Kahn
Opt. Lett. 41(18) 4265-4268 (2016)

Design of electro-optic modulators based on graphene-on-silicon slot waveguides

Abhijeet Phatak, Zhenzhou Cheng, Changyuan Qin, and Keisuke Goda
Opt. Lett. 41(11) 2501-2504 (2016)

Monolithically integrated reconfigurable add-drop multiplexer for mode-division-multiplexing systems

Shipeng Wang, Hao Wu, Hon Ki Tsang, and Daoxin Dai
Opt. Lett. 41(22) 5298-5301 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription