Abstract

We propose and demonstrate a novel temperature-insensitive bio-sensor for accurate and quantitative detection of Escherichia coli (E. coli) bacteria in water. Surface sensitivity is maximized by operating the long-period fiber grating (LPFG) closest to its turnaround wavelength, and the temperature insensitivity is achieved by selectively exciting a pair of cladding modes with opposite dispersion characteristics. Our sensor shows a nominal temperature sensitivity of 1.25  pm/°C, which can be further reduced by properly adjusting the LPFG lengths, while maintaining a high refractive index sensitivity of 1929 nm/RIU. The overall length of the sensor is 3.6  cm, making it ideally suitable for bio-sensing applications. As an example, we also show the sensor’s capability for reliable, quantitative detection of E. coli bacteria in water over a temperature fluctuation of room temperature to 40°C.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Label-free Gram-negative bacteria detection using bacteriophage-adhesin-coated long-period gratings

Ewa Brzozowska, Marcin Koba, Mateusz Śmietana, Sabina Górska, Monika Janik, Andrzej Gamian, and Wojtek J. Bock
Biomed. Opt. Express 7(3) 829-840 (2016)

Temperature insensitive high-precision refractive-index sensor using two concatenated dual-resonance long-period gratings

Saurabh Mani Tripathi, Wojtek J. Bock, Arun Kumar, and Predrag Mikulic
Opt. Lett. 38(10) 1666-1668 (2013)

Detection of bacteria using bacteriophages as recognition elements immobilized on long-period fiber gratings

Mateusz Smietana, Wojtek J. Bock, Predrag Mikulic, Andy Ng, Raja Chinnappan, and Mohammed Zourob
Opt. Express 19(9) 7971-7978 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Z. Wang, J. R. Heflin, K. V. Cott, R. H. Stolen, S. Ramachandran, and S. Ghalmi, Sens. Actuators B 139, 618 (2009).
    [Crossref]
  2. M. J. Yin, B. Huang, S. Gao, A. P. Zhang, and X. Ye, Biomed. Opt. Express 7, 2067 (2016).
    [Crossref]
  3. D. Sun, T. Guo, Y. Ran, Y. Huang, and B.-O. Guan, Biosens. Bioelectron. 61, 541 (2014).
    [Crossref]
  4. R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, Sens. Actuators B 176, 1121 (2013).
    [Crossref]
  5. X. W. Shu, B. A. L. Gwandu, Y. Lin, L. Zhang, and I. Bennion, Opt. Lett. 26, 774 (2001).
    [Crossref]
  6. B. A. L. Gwandu, X. Shu, T. P. Allsop, W. Zhang, and I. Bennion, Electron. Lett. 38, 695 (2002).
    [Crossref]
  7. Q. Liu, K. S. Chiang, and K. P. Lor, Opt. Lett. 31, 2716 (2006).
    [Crossref]
  8. H.-J. Chen, L. Wang, and W. F. Liu, Appl. Opt. 47, 556 (2008).
    [Crossref]
  9. S. M. Tripathi, W. J. Bock, A. Kumar, and P. Mikulic, Opt. Lett. 38, 1666 (2013).
    [Crossref]
  10. S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, Biosens. Bioelectron. 35, 308 (2012).
    [Crossref]
  11. A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1998).
  12. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Elsevier, 2006).
  13. M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981).
  14. R. Kashyap, Fiber Bragg Gratings (Academic, 2010).
  15. R. Lopez-Roldan, P. Tusell, S. Courtois, and J. L. Cortina, Trend Anal. Chem. 44, 46 (2013).
    [Crossref]
  16. D. M. Silva and L. Domingues, Ecotox. Environ. Saf. 113, 400 (2015).
    [Crossref]
  17. I.-H. Cho and J. Irudayaraj, Int. J. Food Microbiol. 164, 70 (2013).
    [Crossref]

2016 (1)

2015 (1)

D. M. Silva and L. Domingues, Ecotox. Environ. Saf. 113, 400 (2015).
[Crossref]

2014 (1)

D. Sun, T. Guo, Y. Ran, Y. Huang, and B.-O. Guan, Biosens. Bioelectron. 61, 541 (2014).
[Crossref]

2013 (4)

R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, Sens. Actuators B 176, 1121 (2013).
[Crossref]

I.-H. Cho and J. Irudayaraj, Int. J. Food Microbiol. 164, 70 (2013).
[Crossref]

S. M. Tripathi, W. J. Bock, A. Kumar, and P. Mikulic, Opt. Lett. 38, 1666 (2013).
[Crossref]

R. Lopez-Roldan, P. Tusell, S. Courtois, and J. L. Cortina, Trend Anal. Chem. 44, 46 (2013).
[Crossref]

2012 (1)

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, Biosens. Bioelectron. 35, 308 (2012).
[Crossref]

2009 (1)

Z. Wang, J. R. Heflin, K. V. Cott, R. H. Stolen, S. Ramachandran, and S. Ghalmi, Sens. Actuators B 139, 618 (2009).
[Crossref]

2008 (1)

2006 (1)

2002 (1)

B. A. L. Gwandu, X. Shu, T. P. Allsop, W. Zhang, and I. Bennion, Electron. Lett. 38, 695 (2002).
[Crossref]

2001 (1)

Adams, M. J.

M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981).

Allsop, T. P.

B. A. L. Gwandu, X. Shu, T. P. Allsop, W. Zhang, and I. Bennion, Electron. Lett. 38, 695 (2002).
[Crossref]

Bennion, I.

B. A. L. Gwandu, X. Shu, T. P. Allsop, W. Zhang, and I. Bennion, Electron. Lett. 38, 695 (2002).
[Crossref]

X. W. Shu, B. A. L. Gwandu, Y. Lin, L. Zhang, and I. Bennion, Opt. Lett. 26, 774 (2001).
[Crossref]

Bock, W. J.

R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, Sens. Actuators B 176, 1121 (2013).
[Crossref]

S. M. Tripathi, W. J. Bock, A. Kumar, and P. Mikulic, Opt. Lett. 38, 1666 (2013).
[Crossref]

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, Biosens. Bioelectron. 35, 308 (2012).
[Crossref]

Chen, H.-J.

Chiang, K. S.

Chinnappan, R.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, Biosens. Bioelectron. 35, 308 (2012).
[Crossref]

Cho, I.-H.

I.-H. Cho and J. Irudayaraj, Int. J. Food Microbiol. 164, 70 (2013).
[Crossref]

Cortina, J. L.

R. Lopez-Roldan, P. Tusell, S. Courtois, and J. L. Cortina, Trend Anal. Chem. 44, 46 (2013).
[Crossref]

Cott, K. V.

Z. Wang, J. R. Heflin, K. V. Cott, R. H. Stolen, S. Ramachandran, and S. Ghalmi, Sens. Actuators B 139, 618 (2009).
[Crossref]

Courtois, S.

R. Lopez-Roldan, P. Tusell, S. Courtois, and J. L. Cortina, Trend Anal. Chem. 44, 46 (2013).
[Crossref]

Domingues, L.

D. M. Silva and L. Domingues, Ecotox. Environ. Saf. 113, 400 (2015).
[Crossref]

Gao, S.

Garg, R.

R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, Sens. Actuators B 176, 1121 (2013).
[Crossref]

Ghalmi, S.

Z. Wang, J. R. Heflin, K. V. Cott, R. H. Stolen, S. Ramachandran, and S. Ghalmi, Sens. Actuators B 139, 618 (2009).
[Crossref]

Ghatak, A. K.

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1998).

Guan, B.-O.

D. Sun, T. Guo, Y. Ran, Y. Huang, and B.-O. Guan, Biosens. Bioelectron. 61, 541 (2014).
[Crossref]

Guo, T.

D. Sun, T. Guo, Y. Ran, Y. Huang, and B.-O. Guan, Biosens. Bioelectron. 61, 541 (2014).
[Crossref]

Gwandu, B. A. L.

B. A. L. Gwandu, X. Shu, T. P. Allsop, W. Zhang, and I. Bennion, Electron. Lett. 38, 695 (2002).
[Crossref]

X. W. Shu, B. A. L. Gwandu, Y. Lin, L. Zhang, and I. Bennion, Opt. Lett. 26, 774 (2001).
[Crossref]

Heflin, J. R.

Z. Wang, J. R. Heflin, K. V. Cott, R. H. Stolen, S. Ramachandran, and S. Ghalmi, Sens. Actuators B 139, 618 (2009).
[Crossref]

Huang, B.

Huang, Y.

D. Sun, T. Guo, Y. Ran, Y. Huang, and B.-O. Guan, Biosens. Bioelectron. 61, 541 (2014).
[Crossref]

Irudayaraj, J.

I.-H. Cho and J. Irudayaraj, Int. J. Food Microbiol. 164, 70 (2013).
[Crossref]

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 2010).

Kumar, A.

Lin, Y.

Liu, Q.

Liu, W. F.

Lopez-Roldan, R.

R. Lopez-Roldan, P. Tusell, S. Courtois, and J. L. Cortina, Trend Anal. Chem. 44, 46 (2013).
[Crossref]

Lor, K. P.

Mikulic, P.

S. M. Tripathi, W. J. Bock, A. Kumar, and P. Mikulic, Opt. Lett. 38, 1666 (2013).
[Crossref]

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, Biosens. Bioelectron. 35, 308 (2012).
[Crossref]

Ng, A.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, Biosens. Bioelectron. 35, 308 (2012).
[Crossref]

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Elsevier, 2006).

Ramachandran, S.

Z. Wang, J. R. Heflin, K. V. Cott, R. H. Stolen, S. Ramachandran, and S. Ghalmi, Sens. Actuators B 139, 618 (2009).
[Crossref]

Ran, Y.

D. Sun, T. Guo, Y. Ran, Y. Huang, and B.-O. Guan, Biosens. Bioelectron. 61, 541 (2014).
[Crossref]

Shu, X.

B. A. L. Gwandu, X. Shu, T. P. Allsop, W. Zhang, and I. Bennion, Electron. Lett. 38, 695 (2002).
[Crossref]

Shu, X. W.

Silva, D. M.

D. M. Silva and L. Domingues, Ecotox. Environ. Saf. 113, 400 (2015).
[Crossref]

Stolen, R. H.

Z. Wang, J. R. Heflin, K. V. Cott, R. H. Stolen, S. Ramachandran, and S. Ghalmi, Sens. Actuators B 139, 618 (2009).
[Crossref]

Sun, D.

D. Sun, T. Guo, Y. Ran, Y. Huang, and B.-O. Guan, Biosens. Bioelectron. 61, 541 (2014).
[Crossref]

Thyagarajan, K.

R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, Sens. Actuators B 176, 1121 (2013).
[Crossref]

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1998).

Tolba, M.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, Biosens. Bioelectron. 35, 308 (2012).
[Crossref]

Tripathi, S. M.

S. M. Tripathi, W. J. Bock, A. Kumar, and P. Mikulic, Opt. Lett. 38, 1666 (2013).
[Crossref]

R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, Sens. Actuators B 176, 1121 (2013).
[Crossref]

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, Biosens. Bioelectron. 35, 308 (2012).
[Crossref]

Tusell, P.

R. Lopez-Roldan, P. Tusell, S. Courtois, and J. L. Cortina, Trend Anal. Chem. 44, 46 (2013).
[Crossref]

Wang, L.

Wang, Z.

Z. Wang, J. R. Heflin, K. V. Cott, R. H. Stolen, S. Ramachandran, and S. Ghalmi, Sens. Actuators B 139, 618 (2009).
[Crossref]

Ye, X.

Yin, M. J.

Zhang, A. P.

Zhang, L.

Zhang, W.

B. A. L. Gwandu, X. Shu, T. P. Allsop, W. Zhang, and I. Bennion, Electron. Lett. 38, 695 (2002).
[Crossref]

Zourob, M.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, Biosens. Bioelectron. 35, 308 (2012).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Biosens. Bioelectron. (2)

D. Sun, T. Guo, Y. Ran, Y. Huang, and B.-O. Guan, Biosens. Bioelectron. 61, 541 (2014).
[Crossref]

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, Biosens. Bioelectron. 35, 308 (2012).
[Crossref]

Ecotox. Environ. Saf. (1)

D. M. Silva and L. Domingues, Ecotox. Environ. Saf. 113, 400 (2015).
[Crossref]

Electron. Lett. (1)

B. A. L. Gwandu, X. Shu, T. P. Allsop, W. Zhang, and I. Bennion, Electron. Lett. 38, 695 (2002).
[Crossref]

Int. J. Food Microbiol. (1)

I.-H. Cho and J. Irudayaraj, Int. J. Food Microbiol. 164, 70 (2013).
[Crossref]

Opt. Lett. (3)

Sens. Actuators B (2)

Z. Wang, J. R. Heflin, K. V. Cott, R. H. Stolen, S. Ramachandran, and S. Ghalmi, Sens. Actuators B 139, 618 (2009).
[Crossref]

R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, Sens. Actuators B 176, 1121 (2013).
[Crossref]

Trend Anal. Chem. (1)

R. Lopez-Roldan, P. Tusell, S. Courtois, and J. L. Cortina, Trend Anal. Chem. 44, 46 (2013).
[Crossref]

Other (4)

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1998).

K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Elsevier, 2006).

M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981).

R. Kashyap, Fiber Bragg Gratings (Academic, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the sensor structure.

Fig. 2.
Fig. 2.

Transmission spectrum for sensors employing a LPFG2 length of (a) 2.6 cm, (b) 2.8 cm, and (c) 2.64 cm. (d) Variation of λ R with ARI for a LPFG2 length of 2.64 cm.

Fig. 3.
Fig. 3.

Dispersion curves for (a) the LP 01 LP 09 mode and (b) the LP 01 LP 06 mode coupling in a germanio-silicate optical fiber with a core made of 3.1 mol. % GeO 2 doped SiO 2 .

Fig. 4.
Fig. 4.

Theoretical transmission spectrum at different temperature differences for (a) LPFG-1, (b) LPFG-2, (c)  l LPFG 2 = 1.75    cm , (d)  l LPFG 2 = 2.2    cm , and (e)  l LPFG 2 = 1.85    cm . (f) Effect of changing ARI on a temperature-insensitive sensor.

Fig. 5.
Fig. 5.

Spectral shift of the sensor at different stages of E. coli binding events.

Fig. 6.
Fig. 6.

SEM micrographs showing a bacterial binding on the sensor surface at a bacterial concentration of (a)  10 2    cfu / ml , (b)  10 3    cfu / ml , and (c)  10 5    cfu / ml .

Metrics