Abstract

Dual-comb interferometry is a measurement technique that uses two laser frequency combs to retrieve complex spectra in a line-by-line basis. This technique can be implemented with electro-optic frequency combs, offering intrinsic mutual coherence, high acquisition speed and flexible repetition-rate operation. A challenge with the operation of this kind of frequency comb in dual-comb interferometry is its limited optical bandwidth. Here, we use coherent spectral broadening and demonstrate electro-optic dual-comb interferometry over the entire telecommunications C band (200 lines covering 40  nm, measured within 10 μs at 100 signal-to-noise ratio per spectral line). These results offer new prospects for electro-optic dual-comb interferometry as a suitable technology for high-speed broadband metrology, for example in optical coherence tomography or coherent Raman microscopy.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast electrooptic dual-comb interferometry

Vicente Durán, Santiago Tainta, and Victor Torres-Company
Opt. Express 23(23) 30557-30569 (2015)

Electro-optic dual-comb interferometer for high-speed vibrometry

Elena L. Teleanu, Vicente Durán, and Víctor Torres-Company
Opt. Express 25(14) 16427-16436 (2017)

Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy

Shuai Wang, Xinyu Fan, Bingxin Xu, and Zuyuan He
Opt. Lett. 42(19) 3984-3987 (2017)

References

  • View by:
  • |
  • |
  • |

  1. I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
    [Crossref]
  2. I. Coddington, N. R. Newbury, and W. C. Swann, Optica 3, 414 (2016).
    [Crossref]
  3. F. Ferdous, D. E. Leaird, C.-B. Huang, and A. M. Weiner, Opt. Lett. 34, 3875 (2009).
    [Crossref]
  4. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
    [Crossref]
  5. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, Nature 502, 355 (2013).
    [Crossref]
  6. I. Coddington, W. Swann, and N. Newbury, Phys. Rev. A 82, 043817 (2010).
    [Crossref]
  7. T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, Nat. Commun. 5, 3375 (2014).
    [Crossref]
  8. J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, Opt. Express 20, 21932 (2012).
    [Crossref]
  9. V. Torres-Company and A. M. Weiner, Laser Photon. Rev. 8, 368 (2014).
    [Crossref]
  10. D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, Opt. Lett. 39, 2688 (2014).
    [Crossref]
  11. P. Martín-Mateos, B. Jerez, and P. Acedo, Opt. Express 23, 21149 (2015).
    [Crossref]
  12. A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and F. Plusquellic, Opt. Express 24, 10424 (2016).
    [Crossref]
  13. G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, Nat. Photonics 10, 27 (2015).
    [Crossref]
  14. V. Durán, S. Tainta, and V. Torres-Company, Opt. Express 23, 30557 (2015).
    [Crossref]
  15. E. Temprana, V. Ataie, B. P.-P. Kuo, E. Myslivets, N. Alic, and S. Radic, Opt. Express 22, 6822 (2014).
    [Crossref]
  16. R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, Opt. Express 21, 6045 (2013).
    [Crossref]
  17. S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, Jpn. J. Appl. Phys. 40, L878 (2001).
    [Crossref]
  18. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, J. Opt. Soc. Am. B 25, 1938 (2008).
    [Crossref]
  19. N. R. Newbury, I. Coddington, and W. Swann, Opt. Express 18, 7929 (2010).
    [Crossref]
  20. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
    [Crossref]
  21. F. Morichetti, A. Melloni, M. Martinelli, R. G. Heiderman, A. Leinse, D. H. Geuzebroek, and A. Borreman, J. Lightwave Technol. 25, 2579 (2007).
    [Crossref]

2016 (2)

2015 (3)

P. Martín-Mateos, B. Jerez, and P. Acedo, Opt. Express 23, 21149 (2015).
[Crossref]

V. Durán, S. Tainta, and V. Torres-Company, Opt. Express 23, 30557 (2015).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, Nat. Photonics 10, 27 (2015).
[Crossref]

2014 (4)

2013 (2)

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, Opt. Express 21, 6045 (2013).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, Nature 502, 355 (2013).
[Crossref]

2012 (1)

2010 (2)

N. R. Newbury, I. Coddington, and W. Swann, Opt. Express 18, 7929 (2010).
[Crossref]

I. Coddington, W. Swann, and N. Newbury, Phys. Rev. A 82, 043817 (2010).
[Crossref]

2009 (2)

F. Ferdous, D. E. Leaird, C.-B. Huang, and A. M. Weiner, Opt. Lett. 34, 3875 (2009).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[Crossref]

2008 (2)

C. Finot, B. Kibler, L. Provost, and S. Wabnitz, J. Opt. Soc. Am. B 25, 1938 (2008).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

2007 (2)

2001 (1)

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, Jpn. J. Appl. Phys. 40, L878 (2001).
[Crossref]

Acedo, P.

Alic, N.

Ataie, V.

Bendahmane, A.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, Nat. Photonics 10, 27 (2015).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, Nature 502, 355 (2013).
[Crossref]

Bielska, K.

Borreman, A.

Coddington, I.

I. Coddington, N. R. Newbury, and W. C. Swann, Optica 3, 414 (2016).
[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, Opt. Express 18, 7929 (2010).
[Crossref]

I. Coddington, W. Swann, and N. Newbury, Phys. Rev. A 82, 043817 (2010).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Deschênes, J.-D.

Douglass, K. O.

Durán, V.

Ferdous, F.

Finot, C.

Fleisher, A. J.

Genest, J.

Geuzebroek, D. H.

Guelachvili, G.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, Nat. Commun. 5, 3375 (2014).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, Nature 502, 355 (2013).
[Crossref]

Hänsch, T. W.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, Nat. Photonics 10, 27 (2015).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, Nat. Commun. 5, 3375 (2014).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, Nature 502, 355 (2013).
[Crossref]

Heiderman, R. G.

Hodges, J. T.

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, Nature 502, 355 (2013).
[Crossref]

Hovannysyan, T.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, Nat. Photonics 10, 27 (2015).
[Crossref]

Huang, C.-B.

F. Ferdous, D. E. Leaird, C.-B. Huang, and A. M. Weiner, Opt. Lett. 34, 3875 (2009).
[Crossref]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[Crossref]

Ideguchi, T.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, Nat. Commun. 5, 3375 (2014).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, Nature 502, 355 (2013).
[Crossref]

Jerez, B.

Jiang, Z.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[Crossref]

Kibler, B.

Kourogi, M.

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, Jpn. J. Appl. Phys. 40, L878 (2001).
[Crossref]

Kuo, B. P.-P.

Leaird, D. E.

Lee, S.-J.

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, Jpn. J. Appl. Phys. 40, L878 (2001).
[Crossref]

Leinse, A.

Long, D. A.

Martinelli, M.

Martín-Mateos, P.

Maxwell, S. E.

Melloni, A.

Millot, G.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, Nat. Photonics 10, 27 (2015).
[Crossref]

Morichetti, F.

Myslivets, E.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[Crossref]

Newbury, N.

I. Coddington, W. Swann, and N. Newbury, Phys. Rev. A 82, 043817 (2010).
[Crossref]

Newbury, N. R.

I. Coddington, N. R. Newbury, and W. C. Swann, Optica 3, 414 (2016).
[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, Opt. Express 18, 7929 (2010).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Ohtsu, M.

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, Jpn. J. Appl. Phys. 40, L878 (2001).
[Crossref]

Picqué, N.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, Nat. Photonics 10, 27 (2015).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, Nat. Commun. 5, 3375 (2014).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, Nature 502, 355 (2013).
[Crossref]

Pitois, S.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, Nat. Photonics 10, 27 (2015).
[Crossref]

Plusquellic, D. F.

Plusquellic, F.

Poisson, A.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, Nat. Commun. 5, 3375 (2014).
[Crossref]

Potvin, S.

Provost, L.

Radic, S.

Reed, Z. D.

Roy, J.

Swann, W.

N. R. Newbury, I. Coddington, and W. Swann, Opt. Express 18, 7929 (2010).
[Crossref]

I. Coddington, W. Swann, and N. Newbury, Phys. Rev. A 82, 043817 (2010).
[Crossref]

Swann, W. C.

I. Coddington, N. R. Newbury, and W. C. Swann, Optica 3, 414 (2016).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Tainta, S.

Temprana, E.

Torres-Company, V.

Wabnitz, S.

Weiner, A. M.

V. Torres-Company and A. M. Weiner, Laser Photon. Rev. 8, 368 (2014).
[Crossref]

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, Opt. Express 21, 6045 (2013).
[Crossref]

F. Ferdous, D. E. Leaird, C.-B. Huang, and A. M. Weiner, Opt. Lett. 34, 3875 (2009).
[Crossref]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[Crossref]

Widiyatmoko, B.

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, Jpn. J. Appl. Phys. 40, L878 (2001).
[Crossref]

Wu, R.

Yan, M.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, Nat. Photonics 10, 27 (2015).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, Jpn. J. Appl. Phys. 40, L878 (2001).
[Crossref]

Laser Photon. Rev. (1)

V. Torres-Company and A. M. Weiner, Laser Photon. Rev. 8, 368 (2014).
[Crossref]

Nat. Commun. (1)

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, Nat. Commun. 5, 3375 (2014).
[Crossref]

Nat. Photonics (3)

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, Nat. Photonics 10, 27 (2015).
[Crossref]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[Crossref]

Nature (1)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, Nature 502, 355 (2013).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Optica (1)

Phys. Rev. A (1)

I. Coddington, W. Swann, and N. Newbury, Phys. Rev. A 82, 043817 (2010).
[Crossref]

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the experimental setup (see details in the text). The yellow line indicates the path followed by the signal, the blue line the path corresponding to the LO, and the green line the common path for both arms. The dashed area comprises the part of the system used for achieving the coherent nonlinear broadening. On the left, flat-topped broadened spectra at the output of the HNLF for both interferometer arms.

Fig. 2.
Fig. 2.

(a) Spectral SNR and the corresponding spectral phase error ϵ ϕ for 25 MHz (single-shot acquisition) and 1 MHz. In the latter case, the maximum value of ϵ ϕ is 150 mrad. (b) Plot of SNR f × M when coherent averaging is performed for two configurations of our system.

Fig. 3.
Fig. 3.

(a) Phase profile imparted onto the signal spectrum by the PS (blue curve) and spectral phases obtained from a single interferogram at 100 kHz (red points). (b) Reconstructed intensity profile built from the electro-optic dual-comb measurement.

Fig. 4.
Fig. 4.

(a) Recovered spectral phase corresponding to a spool of 20 m of single-mode fiber over 5 THz of bandwidth. (b) Recovered spectral phase for a silicon nitride waveguide.

Metrics