Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High-efficiency red electroluminescent device based on multishelled InP quantum dots

Not Accessible

Your library or personal account may give you access

Abstract

We report on the synthesis of highly fluorescent red-emitting InP quantum dots (QDs) and their application to the fabrication of a high-efficiency QD-light-emitting diode (QLED). The core/shell heterostructure of the QDs is elaborately tailored toward a multishelled structure with a composition-gradient ZnSeS intermediate shell and an outer ZnS shell. Using the resulting InP/ZnSeS/ZnS QDs as an emitting layer, all-solution-processible red InP QLEDs are fabricated with a hybrid multilayered device structure having an organic hole transport layer (HTL) and an inorganic ZnO nanoparticle electron transport layer. Two HTLs of poly(9-vinlycarbazole) or poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4-(N-(4-sec-butylphenyl))diphenyl-amine), whose hole mobilities are different by at least three orders of magnitude, are individually applied for QLED fabrication and such HTL-dependent device performances are compared. Our best red device displays exceptional figures of merit such as a maximum luminance of 2849cd/m2, a current efficiency of 4.2cd/A, and an external quantum efficiency of 2.5%.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Electroluminescence from two I–III–VI quantum dots of A–Ga–S (A=Cu, Ag)

Jong-Hoon Kim, Suk-Young Yoon, Kyung-Hye Kim, Han-Byule Lim, Hwi-Jae Kim, and Heesun Yang
Opt. Lett. 43(21) 5287-5290 (2018)

High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering

Qianqian Huang, Jiangyong Pan, Yuning Zhang, Jing Chen, Zhi Tao, Chao He, Kaifeng Zhou, Yan Tu, and Wei Lei
Opt. Express 24(23) 25955-25963 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved