Abstract

Compact power splitters designed ab initio using binary particle swarm optimization in a 2D mesh for a standard foundry silicon photonic platform are studied. Designs with a 4.8  μm×4.8  μm footprint composed of 200  nm×200  nm and 100  nm×100  nm cells are demonstrated. Despite not respecting design rules, the design with the smaller cells had lower insertion losses and broader bandwidth and showed consistent behavior across the wafer. Deviations between design and experiments point to the need for further investigations of the minimum feature dimensions.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization rotator-splitters in standard active silicon photonics platforms

Wesley D. Sacher, Tymon Barwicz, Benjamin J. F. Taylor, and Joyce K. S. Poon
Opt. Express 22(4) 3777-3786 (2014)

A compact and low loss Y-junction for submicron silicon waveguide

Yi Zhang, Shuyu Yang, Andy Eu-Jin Lim, Guo-Qiang Lo, Christophe Galland, Tom Baehr-Jones, and Michael Hochberg
Opt. Express 21(1) 1310-1316 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription