Abstract

A highly stable setup for stimulated Raman scattering (SRS) microscopy is presented. It is based on a two-branch femtosecond Er:fiber laser operating at a 40 MHz repetition rate. One of the outputs is directly modulated at the Nyquist frequency with an integrated electro-optic modulator (EOM). This compact source combines a jitter-free pulse synchronization with a broad tunability and allows for shot-noise limited SRS detection. The performance of the SRS microscope is illustrated with measurements on samples from material science and cell biology.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact, low-noise, all-solid-state laser system for stimulated Raman scattering microscopy

Tobias Steinle, Vikas Kumar, Andy Steinmann, Marco Marangoni, Giulio Cerullo, and Harald Giessen
Opt. Lett. 40(4) 593-596 (2015)

Broadband stimulated Raman scattering with Fourier-transform detection

Julien Réhault, Francesco Crisafi, Vikas Kumar, Gustavo Ciardi, Marco Marangoni, Giulio Cerullo, and Dario Polli
Opt. Express 23(19) 25235-25246 (2015)

High-speed polarization-resolved coherent Raman scattering imaging

Matthias Hofer, Naveen K. Balla, and Sophie Brasselet
Optica 4(7) 795-801 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription