Abstract

We demonstrate higher-order-mode (Aeff up to 2000  μm2) propagation in a 100 μm outer diameter pure-silica fiber with a low-index polymer jacket commonly used for fiber laser pump guidance. This simple structure obviates the need for complex designs deemed necessary for realizing large-mode-area fibers. Modes ranging from HE1,12 to HE1,22 were found to propagate stably over 15 m in this fiber. The index step is approximately 4 times larger than that obtained with fluorine down doping; thus the fiber supports even higher-order modes, which may have implications for building rare-earth-doped fiber lasers or achieving enhanced dispersion tunability for high-energy fiber nonlinear phenomena.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Strategy and method for nanoporous cladding formation on silica optical fiber

Hui Chen, Fei Tian, Kai Liu, Jiri Kanka, and Henry Du
Opt. Lett. 41(12) 2831-2834 (2016)

Modal analysis of antiresonant hollow core fibers using S2 imaging

Amy Van Newkirk, J. E. Antonio-Lopez, James Anderson, Roberto Alvarez-Aguirre, Zeinab Sanjabi Eznaveh, Gisela Lopez-Galmiche, Rodrigo Amezcua-Correa, and Axel Schülzgen
Opt. Lett. 41(14) 3277-3280 (2016)

All-solid very large mode area ytterbium-doped silica microstructured fiber based on accurate control on cladding index

Huifeng Wei, Kangkang Chen, Yucheng Yang, and Jinyan Li
Opt. Express 24(8) 8978-8987 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, Opt. Lett. 31, 1797 (2006).
    [Crossref]
  2. S. Ramachandran, J. Fini, M. Mermelstein, J. Nicholson, S. Ghalmi, and M. Yan, Laser Photon. Rev. 2, 429 (2008).
    [Crossref]
  3. J. W. Nicholson, J. M. Fini, A. M. DeSantalo, X. Liu, K. Feder, P. S. Westbrook, V. R. Supradeepa, E. Monberg, F. DiMarcello, R. Ortiz, C. Headley, and D. J. DiGiovanni, Opt. Express 20, 24575 (2012).
    [Crossref]
  4. A. Efimov, A. Taylor, F. Omenetto, J. Knight, W. Wadsworth, and P. Russell, Opt. Express 11, 910 (2003).
    [Crossref]
  5. J. Demas, P. Steinvurzel, B. Tai, L. Rishøj, Y. Chen, and S. Ramachandran, Optica 2, 14 (2015).
    [Crossref]
  6. P. Steinvurzel, J. Demas, B. Tai, Y. Chen, L. Yan, and S. Ramachandran, Opt. Lett. 39, 743 (2014).
    [Crossref]
  7. J. Carpenter and T. D. Wilkinson, J. Lightwave Technol. 30, 1386 (2012).
    [Crossref]
  8. J. Demas, L. Rishøj, and S. Ramachandran, Opt. Express 23, 28531 (2015).
    [Crossref]
  9. J. Demas and S. Ramachandran, Opt. Express 22, 23043 (2014).
    [Crossref]
  10. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, Opt. Express 16, 7233 (2008).
    [Crossref]
  11. D. N. Schimpf, R. A. Barankov, and S. Ramachandran, Opt. Express 19, 13008 (2011).
    [Crossref]
  12. S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich, Opt. Express 23, 3721 (2015).
    [Crossref]
  13. J. Thomas, N. Jovanovic, R. G. Krämer, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, Opt. Express 20, 21434 (2012).
    [Crossref]
  14. S. Israelsen, L. Rishøj, and K. Rottwitt, Opt. Express 22, 11861 (2014).
    [Crossref]
  15. M. E. V. Pedersen, P. Kristensen, L. Grüner-Nielsen, and K. Rottwitt, J. Lightwave Technol. 29, 3129 (2011).
    [Crossref]
  16. P. Gregg, M. Mirhosseini, A. Rubano, L. Marrucci, E. Karimi, R. W. Boyd, and S. Ramachandran, Opt. Lett. 40, 1729 (2015).
    [Crossref]

2015 (4)

2014 (3)

2012 (3)

2011 (2)

2008 (2)

S. Ramachandran, J. Fini, M. Mermelstein, J. Nicholson, S. Ghalmi, and M. Yan, Laser Photon. Rev. 2, 429 (2008).
[Crossref]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, Opt. Express 16, 7233 (2008).
[Crossref]

2006 (1)

2003 (1)

Barankov, R. A.

Boyd, R. W.

Carpenter, J.

Chen, Y.

Demas, J.

DeSantalo, A. M.

DiGiovanni, D. J.

DiMarcello, F.

Dimarcello, F. V.

Efimov, A.

Feder, K.

Fini, J.

S. Ramachandran, J. Fini, M. Mermelstein, J. Nicholson, S. Ghalmi, and M. Yan, Laser Photon. Rev. 2, 429 (2008).
[Crossref]

Fini, J. M.

Ghalmi, S.

Golowich, S. E.

Gregg, P.

Grüner-Nielsen, L.

Headley, C.

Israelsen, S.

Jovanovic, N.

Karimi, E.

Knight, J.

Krämer, R. G.

Kristensen, P.

Liu, X.

Marrucci, L.

Marshall, G. D.

Mermelstein, M.

S. Ramachandran, J. Fini, M. Mermelstein, J. Nicholson, S. Ghalmi, and M. Yan, Laser Photon. Rev. 2, 429 (2008).
[Crossref]

Mirhosseini, M.

Monberg, E.

Nicholson, J.

S. Ramachandran, J. Fini, M. Mermelstein, J. Nicholson, S. Ghalmi, and M. Yan, Laser Photon. Rev. 2, 429 (2008).
[Crossref]

Nicholson, J. W.

Nolte, S.

Omenetto, F.

Ortiz, R.

Pedersen, M. E. V.

Ramachandran, S.

Rishøj, L.

Rottwitt, K.

Rubano, A.

Russell, P.

Schimpf, D. N.

Steel, M. J.

Steinvurzel, P.

Supradeepa, V. R.

Tai, B.

Taylor, A.

Thomas, J.

Tünnermann, A.

Wadsworth, W.

Westbrook, P. S.

Wilkinson, T. D.

Wisk, P.

Withford, M. J.

Yablon, A. D.

Yan, L.

Yan, M.

S. Ramachandran, J. Fini, M. Mermelstein, J. Nicholson, S. Ghalmi, and M. Yan, Laser Photon. Rev. 2, 429 (2008).
[Crossref]

Yan, M. F.

J. Lightwave Technol. (2)

Laser Photon. Rev. (1)

S. Ramachandran, J. Fini, M. Mermelstein, J. Nicholson, S. Ghalmi, and M. Yan, Laser Photon. Rev. 2, 429 (2008).
[Crossref]

Opt. Express (9)

Opt. Lett. (3)

Optica (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Simulated dispersion for a selection of HE 1 , m modes in the fabricated fiber. (b) Refractive index profile of fabricated polymer coated fiber and fictious fluorine fiber. (c) Simulated dispersion at 1064 nm as a function of mode order for the two fibers.
Fig. 2.
Fig. 2. (a) Experimental setup for higher-order mode excitation. The source is at 1048 nm ( FWHM = 0.08    nm ) for images, a 10xx nm tunable ECL for fC 2 , or a FWHM = 2.8    nm filtered LED centered at 1064 nm for C 2 , single-mode fiber (SMF), spatial light modulator (SLM), fiber under test (FUT), polarizing beam displacing prism (PBDP). (b)–(g) Imaged modes after 15.6 m of propagation.
Fig. 3.
Fig. 3. Simulated intensity distribution of four modes ( Γ = 0.6 ), orange arrows indicate local polarization: (a)  HE 1 , 3 , (b)  HE 1,17 , (c)  EH 1 , 2 , (d)  EH 1,16 . (e) Simulated PER. (f) Simulation of most parasitic modal content in the fiber relative to targeted HE 1 , m mode.
Fig. 4.
Fig. 4. (a) Three examples of fC 2 traces: (a)  HE 1 , 5 , (b)  HE 1,17 , (c)  HE 1,30 . (d) Modal purity as a function of targeted mode order. Each red cross represents mode purity to most parasitic mode found from a fC 2 trace. The blue line is the average for each mode. Representative mode images in the three regimes are shown in Fig. 2.
Fig. 5.
Fig. 5. (a) Three examples of C 2 traces target mode are: (a)  HE 1,12 , (b)  HE 1,17 , (c)  HE 1,26 . (d) Dispersion at 1064 nm for different mode orders. Black circles are average over all pixels, error bars denote a single standard deviation, and blue crosses are simulated results.

Metrics