Abstract

Improving the laser-induced damage threshold of optical components is a basic endeavor in femtosecond technology. By testing more than 30 different femtosecond mirrors with 42 fs laser pulses at 1 kHz repetition rate, we found that a combination of high-bandgap dielectric materials and improved design and coating techniques enable femtosecond multilayer damage thresholds exceeding 2  J/cm2 in some cases. A significant ×2.5 improvement in damage resistance can also be achieved for hybrid Ag–multilayer mirrors exhibiting more than 1  J/cm2 threshold with a clear anticorrelation between damage resistance and peak field strength in the stack. Slight dependence on femtosecond pulse length and substantial decrease for high (megahertz) repetition rates are also observed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Annealing effects on microstructure and laser-induced damage threshold of HfO2/SiO2 multilayer mirrors

Shuvendu Jena, Raj Bahadur Tokas, K. Divakar Rao, Sudhakar Thakur, and Naba Kishore Sahoo
Appl. Opt. 55(22) 6108-6114 (2016)

Direct comparison of kilohertz- and megahertz-repetition-rate femtosecond damage threshold

B. J. Nagy, L. Gallais, L. Vámos, D. Oszetzky, P. Rácz, and P. Dombi
Opt. Lett. 40(11) 2525-2528 (2015)

Influence of nodular defects on the laser damage resistance of optical coatings in the femtosecond regime

Laurent Gallais, Xinbin Cheng, and Zhanshan Wang
Opt. Lett. 39(6) 1545-1548 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription