Abstract

The images produced by multicore endoscopes are pixelated, and their resolution is limited by the core-to-core spacing. Lenses can be used to improve the resolution, but this reduces the field of view proportionally. Lensless endoscopy through multicore fibers can be achieved by using wavefront shaping techniques. This requires a calibration step, and the conformation of the fiber must remain constant over time. Here we demonstrate that, without a calibration step and in the presence of core-to-core coupling, we can obtain fluorescence images with a resolution better than the core-to-core spacing. This is accomplished by taking advantage of the memory effect present in these kinds of fibers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light control in a multicore fiber using the memory effect

Nicolino Stasio, Donald B. Conkey, Christophe Moser, and Demetri Psaltis
Opt. Express 23(23) 30532-30544 (2015)

Imaging blood cells through scattering biological tissue using speckle scanning microscopy

Xin Yang, Ye Pu, and Demetri Psaltis
Opt. Express 22(3) 3405-3413 (2014)

Widefield lensless imaging through a fiber bundle via speckle correlations

Amir Porat, Esben Ravn Andresen, Hervé Rigneault, Dan Oron, Sylvain Gigan, and Ori Katz
Opt. Express 24(15) 16835-16855 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, Nat. Methods 2, 941 (2005).
    [Crossref]
  2. G. Oh, E. Chung, and S. H. Yun, Opt. Fiber Technol. 19, 760 (2013).
    [Crossref]
  3. S. Bianchi and R. D. Leonardo, Lab. Chip 12, 635 (2012).
    [Crossref]
  4. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, Opt. Express 20, 10583 (2012).
    [Crossref]
  5. T. Čižmár and K. Dholakia, Nat. Commun. 3, 1027 (2012).
    [Crossref]
  6. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
    [Crossref]
  7. E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, Opt. Lett. 38, 609 (2013).
    [Crossref]
  8. D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, Opt. Lett. 39, 1921 (2014).
    [Crossref]
  9. D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, J. Biomed. Opt. 21, 045002 (2016).
    [Crossref]
  10. M. Plöschner, T. Tyc, and T. Čižmár, Nat. Photonics 9, 529 (2015).
    [Crossref]
  11. A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, Opt. Lett. 36, 1707 (2011).
    [Crossref]
  12. N. Stasio, D. B. Conkey, C. Moser, and D. Psaltis, Opt. Express 23, 30532 (2015).
    [Crossref]
  13. S. Farahi, D. Ziegler, I. N. Papadopoulos, D. Psaltis, and C. Moser, Opt. Express 21, 22504 (2013).
    [Crossref]
  14. S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
    [Crossref]
  15. I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
    [Crossref]
  16. L. V. Amitonova, A. P. Mosk, and P. W. H. Pinkse, Opt. Express 23, 20569 (2015).
    [Crossref]
  17. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, Nature 491, 232 (2012).
    [Crossref]
  18. O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photonics 8, 784 (2014).
    [Crossref]
  19. A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless endoscopy via speckle-correlations,” arXiv:1601.01518 (2016).
  20. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).
  21. J. R. Fienup, Appl. Opt. 21, 2758 (1982).
    [Crossref]
  22. H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424 (2015).
    [Crossref]

2016 (1)

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, J. Biomed. Opt. 21, 045002 (2016).
[Crossref]

2015 (4)

2014 (2)

2013 (3)

2012 (5)

S. Bianchi and R. D. Leonardo, Lab. Chip 12, 635 (2012).
[Crossref]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, Opt. Express 20, 10583 (2012).
[Crossref]

T. Čižmár and K. Dholakia, Nat. Commun. 3, 1027 (2012).
[Crossref]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, Nature 491, 232 (2012).
[Crossref]

2011 (1)

2005 (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, Nat. Methods 2, 941 (2005).
[Crossref]

1988 (2)

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[Crossref]

I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[Crossref]

1982 (1)

Amitonova, L. V.

Andresen, E. R.

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, Opt. Lett. 38, 609 (2013).
[Crossref]

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless endoscopy via speckle-correlations,” arXiv:1601.01518 (2016).

Bertolotti, J.

H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424 (2015).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, Nature 491, 232 (2012).
[Crossref]

Bianchi, S.

S. Bianchi and R. D. Leonardo, Lab. Chip 12, 635 (2012).
[Crossref]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, Nature 491, 232 (2012).
[Crossref]

Bouwmans, G.

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, Nat. Methods 2, 941 (2005).
[Crossref]

Choi, W.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, Opt. Lett. 39, 1921 (2014).
[Crossref]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Chung, E.

Cižmár, T.

M. Plöschner, T. Tyc, and T. Čižmár, Nat. Photonics 9, 529 (2015).
[Crossref]

T. Čižmár and K. Dholakia, Nat. Commun. 3, 1027 (2012).
[Crossref]

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, Nat. Methods 2, 941 (2005).
[Crossref]

Conkey, D. B.

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, J. Biomed. Opt. 21, 045002 (2016).
[Crossref]

N. Stasio, D. B. Conkey, C. Moser, and D. Psaltis, Opt. Express 23, 30532 (2015).
[Crossref]

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Dholakia, K.

T. Čižmár and K. Dholakia, Nat. Commun. 3, 1027 (2012).
[Crossref]

Dunsby, C.

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Farahi, S.

Feng, S.

I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[Crossref]

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[Crossref]

Fienup, J. R.

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photonics 8, 784 (2014).
[Crossref]

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, Nat. Methods 2, 941 (2005).
[Crossref]

French, P. M. W.

Freund, I.

I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[Crossref]

Gigan, S.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photonics 8, 784 (2014).
[Crossref]

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless endoscopy via speckle-correlations,” arXiv:1601.01518 (2016).

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photonics 8, 784 (2014).
[Crossref]

Jung, J. C.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, Nat. Methods 2, 941 (2005).
[Crossref]

Kane, C.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[Crossref]

Katz, O.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photonics 8, 784 (2014).
[Crossref]

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless endoscopy via speckle-correlations,” arXiv:1601.01518 (2016).

Kim, D.

Kim, J.

Kim, M.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, Opt. Lett. 39, 1921 (2014).
[Crossref]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Lagendijk, A.

H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424 (2015).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, Nature 491, 232 (2012).
[Crossref]

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Lee, P. A.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[Crossref]

Leonardo, R. D.

S. Bianchi and R. D. Leonardo, Lab. Chip 12, 635 (2012).
[Crossref]

Monneret, S.

Moon, J.

Morales-Delgado, E. E.

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, J. Biomed. Opt. 21, 045002 (2016).
[Crossref]

Moser, C.

Mosk, A. P.

Neil, M. A. A.

Oh, G.

G. Oh, E. Chung, and S. H. Yun, Opt. Fiber Technol. 19, 760 (2013).
[Crossref]

Oron, D.

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless endoscopy via speckle-correlations,” arXiv:1601.01518 (2016).

Papadopoulos, I. N.

Paterson, C.

Pinkse, P. W. H.

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, Nat. Methods 2, 941 (2005).
[Crossref]

Plöschner, M.

M. Plöschner, T. Tyc, and T. Čižmár, Nat. Photonics 9, 529 (2015).
[Crossref]

Porat, A.

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless endoscopy via speckle-correlations,” arXiv:1601.01518 (2016).

Psaltis, D.

Rigneault, H.

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, Opt. Lett. 38, 609 (2013).
[Crossref]

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless endoscopy via speckle-correlations,” arXiv:1601.01518 (2016).

Romito, M.

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, J. Biomed. Opt. 21, 045002 (2016).
[Crossref]

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[Crossref]

Schnitzer, M. J.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, Nat. Methods 2, 941 (2005).
[Crossref]

Stasio, N.

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, J. Biomed. Opt. 21, 045002 (2016).
[Crossref]

N. Stasio, D. B. Conkey, C. Moser, and D. Psaltis, Opt. Express 23, 30532 (2015).
[Crossref]

Stone, A. D.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[Crossref]

Thompson, A. J.

Tyc, T.

M. Plöschner, T. Tyc, and T. Čižmár, Nat. Photonics 9, 529 (2015).
[Crossref]

van Putten, E. G.

H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424 (2015).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, Nature 491, 232 (2012).
[Crossref]

Vos, W. L.

H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424 (2015).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, Nature 491, 232 (2012).
[Crossref]

Yang, T. D.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, Opt. Lett. 39, 1921 (2014).
[Crossref]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Yilmaz, H.

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Yun, S. H.

G. Oh, E. Chung, and S. H. Yun, Opt. Fiber Technol. 19, 760 (2013).
[Crossref]

Ziegler, D.

Appl. Opt. (1)

J. Biomed. Opt. (1)

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, J. Biomed. Opt. 21, 045002 (2016).
[Crossref]

Lab. Chip (1)

S. Bianchi and R. D. Leonardo, Lab. Chip 12, 635 (2012).
[Crossref]

Nat. Commun. (1)

T. Čižmár and K. Dholakia, Nat. Commun. 3, 1027 (2012).
[Crossref]

Nat. Methods (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, Nat. Methods 2, 941 (2005).
[Crossref]

Nat. Photonics (2)

M. Plöschner, T. Tyc, and T. Čižmár, Nat. Photonics 9, 529 (2015).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photonics 8, 784 (2014).
[Crossref]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, Nature 491, 232 (2012).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

G. Oh, E. Chung, and S. H. Yun, Opt. Fiber Technol. 19, 760 (2013).
[Crossref]

Opt. Lett. (3)

Optica (1)

Phys. Rev. Lett. (3)

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[Crossref]

I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[Crossref]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Other (2)

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless endoscopy via speckle-correlations,” arXiv:1601.01518 (2016).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental optical setup. The output of a diode pumped solid-state laser ( λ = 532    nm ) is expanded by the telescope OBJ1-L1 and is sent to the spatial light modulator (SLM) by the polarizing beam splitter (PBS). Tilted beams are created on the SLM plane, which is imaged on the MCF facet. Rocking the incidence angle on the MCF produces shifting speckle patterns in the sample plane S . For each angle of incidence, the fluorescence emitted by the sample is collected back through the MCF, reflected by a dichroic mirror (DM) and integrated by an avalanche photodiode (APD). HWP= half-wave plate; BS1= BS2 = 90:10 R:T beam splitter. BS1= BS2 = 50:50 R:T beam splitter. OBJ 1 = 10 × , NA = 0.25 , Newport; OBJ 2 = 40 × , NA = 0.65 , Newport; OBJ 3 = 20 × , NA = 0.4 , Newport. Focal length lenses: L 1 = 150    mm , L 2 = L 3 = 200    mm , L 4 = 100    mm .
Fig. 2.
Fig. 2. SSM through MCFs characterization. (a) Speckle pattern generated at the sample plane S for normal incidence on the MCF is recorded on a CCD camera. Once the incidence angle is varied, the shifted version of the speckle is recorded, and the cross-correlation with the first pattern is calculated. The intensity map represents the calculated degree of correlation as a function of the incidence angle. (b) Line profile along the yellow dashed line in (a). We consider the FWHM of this curve as memory effect range, which gives the maximum field of view. Imaging 300 μm far from the fiber facet gives a field of view of 35 μm. (c) Measured mean speckle grain size as a function of distance from the fiber facet, an indicator of the resolution of the SSM technique. It has been calculated measuring the FWHM of the autocorrelation of the speckle pattern in a 50 × 50    μm area in front of the MCF. The lines in (b) and (c) are drawn only for clarity.
Fig. 3.
Fig. 3. SSM imaging through a MCF of a 1951 USAF target. The four columns are the autocorrelation of the intensity map I ( θ ) , the Fourier transform of the object obtained from the autocorrelation map, the transmission widefield image of the sample, and the sample imaged by SSM. The scale bars are 10 μm. The SSM image of the Group 7 Element 6 of the USAF target was 2D interpolated to double the number of pixels.
Fig. 4.
Fig. 4. SSM imaging through a MCF of 1 μm fluorescent beads deposited on a glass slide. (a) Example of intensity patterns I ( θ ) recorded by the APD. For the experiments, 10 different intensity maps were acquired to calculate the average autocorrelation. (b) Fluorescence widefield image of the sample. (c) Sample imaged and recovered by SSM. The distance between the two beads is approximately 3 μm. The scale bars are 5 μm.
Fig. 5.
Fig. 5. SSM imaging through a MCF of 1 μm fluorescent beads deposited on a glass slide. The four columns are the autocorrelation of the intensity map I ( θ ) , the calculated Fourier transform of the object, the fluorescence widefield image of the sample, and the sample imaged by SSM. The scale bars are 5 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( θ ) = + O ( r ) S ( r Δ r ) d 2 r = [ O * S ] ( θ ) ,
I I ( Δ θ ) = O * S O * S = O O * S S ,

Metrics