Abstract

By using two-photon lithographic 3D printing, we demonstrate additive manufacturing of a dielectric concentrator directly on a LED chip. With a size of below 200 μm in diameter and length, light output is increased by a factor of 6.2 in collimation direction, while the emission half-angle is reduced by 50%. We measure excellent form fidelity and irradiance patterns close to simulation. Additionally, a more complex shape design is presented, which exhibits a nonconventional triangular illumination pattern. The introduced method features exceptional design freedoms which can be used to tailor high-quality miniature illumination optics for specific lighting tasks, for example, endoscopy.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Fabrication of computer-generated holograms using femtosecond laser direct writing

René Berlich, Daniel Richter, Martin Richardson, and Stefan Nolte
Opt. Lett. 41(8) 1752-1755 (2016)

Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes

Zhigang Zang, Xiaofeng Zeng, Jihe Du, Ming Wang, and Xiaosheng Tang
Opt. Lett. 41(15) 3463-3466 (2016)

On-chip rotated polarization directional coupler fabricated by femtosecond laser direct writing

Ci-Yu Wang, Jun Gao, and Xian-Min Jin
Opt. Lett. 44(1) 102-105 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription