Abstract

We demonstrate an all-optical fabrication method of quasi-phase matching structures in lithium niobate (LiNbO3) waveguides using a tightly focused femtosecond near-infrared laser beam (wavelength of 800 nm). In contrast to other all-optical schemes that utilize a periodic lowering of the nonlinear coefficient χ(2) by material modification, here the illumination of femtosecond pulses directly reverses the sign of χ(2) through the process of ferroelectric domain inversion. The resulting quasi-phase matching structures, therefore, lead to more efficient nonlinear interactions. As an experimental demonstration, we fabricate a structure with the period of 2.74 μm to frequency double 815 nm light. A maximum conversion efficiency of 17.45% is obtained for a 10 mm long waveguide.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides

K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, and F. Laurell
J. Opt. Soc. Am. B 14(11) 3197-3203 (1997)

Efficient quasi-phase-matching in fan-out PPSLT crystal waveguides by femtosecond laser direct writing

Lingqi Li, Carolina Romero, Javier R. Vázquez de Aldana, Lei Wang, Yang Tan, and Feng Chen
Opt. Express 27(25) 36875-36885 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription