Abstract

Single-frequency laser sources at a wavelength of 1 μm are typically scaled in power with Ytterbium-doped double-clad fiber amplifiers. The main limitations are stimulated Brillouin scattering, transversal mode instabilities and, from a technical point of view, the degree of fiber integration for a rugged setup. Addressing these limitations, we propose an alternative high-power single-frequency amplifier concept based on core pumping. A nonplanar ring oscillator with 2 W of output power at 1 kHz spectral linewidth was scaled by a fiber amplifier up to a power of 158 W without any indication of stimulated Brillouin scattering—using a standard Ytterbium-doped single-mode fiber with a mode field area of only 100μm2. A short active fiber length and a strong temperature gradient along the gain fiber yield to efficient suppression of stimulated Brillouin scattering. For deeper understanding of the Brillouin scattering mitigation mechanism, we studied the Brillouin gain spectra with a Fabry–Perot interferometer at different output power levels of the fiber amplifier.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811  W output power

Craig Robin, Iyad Dajani, and Benjamin Pulford
Opt. Lett. 39(3) 666-669 (2014)

Investigations of single-frequency Raman fiber amplifiers operating at 1178 nm

Iyad Dajani, Christopher Vergien, Craig Robin, and Benjamin Ward
Opt. Express 21(10) 12038-12052 (2013)

414  W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier

Long Huang, Hanshuo Wu, Ruixian Li, Lei Li, Pengfei Ma, Xiaolin Wang, Jinyong Leng, and Pu Zhou
Opt. Lett. 42(1) 1-4 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription