Abstract

We propose an approach to actively tune the scattering pattern of a Mie-type spherical antenna. The scheme is based on separate control over the induced electric dipole and induced magnetic dipole using two coherent focused beams of radial polarization and azimuthal polarization, respectively. By carefully tuning the amplitude and phase relation of the two beams, a broadband unidirectional scattering can be achieved, even at the antenna’s resonant wavelength where the antenna scatters efficiently. By moving the focus of one beam, a drastic switch of the unidirectional scattering can be observed. Such a scheme enables the design of ultra-compact optical switches and directional couplers based on nanoantennas.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles

Brice Rolly, Brian Stout, and Nicolas Bonod
Opt. Express 20(18) 20376-20386 (2012)

Crucial role of the emitter–particle distance on the directivity of optical antennas

Brice Rolly, Brian Stout, Sebastien Bidault, and Nicolas Bonod
Opt. Lett. 36(17) 3368-3370 (2011)

Nanoscale displacement sensing based on the interaction of a Gaussian beam with dielectric nano-dimer antennas

Yong Wang, Yonghua Lu, and Pei Wang
Opt. Express 26(2) 1000-1011 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription