Abstract

We propose a method to measure the in-plane and out-of-plane displacements of tissue using the correlation coefficients of optical coherence tomography (OCT) signals. The displacements are determined by the local correlation coefficients between digitally shifted reference OCT images and a target image. The method achieves sub-micron displacement measurement with an accuracy better than 0.32 μm and repeatability better than 0.36 μm. The feasibility of the method was examined by measuring the displacement field of a laser irradiated porcine retina. This method successfully visualized the dynamic change of the displacement field during laser irradiation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-dimensional micro-displacement measurement for laser coagulation using optical coherence tomography

Kazuhiro Kurokawa, Shuichi Makita, Young-Joo Hong, and Yoshiaki Yasuno
Biomed. Opt. Express 6(1) 170-190 (2015)

Simultaneous measurement of in-plane and out-of-plane displacement fields in scattering media using phase-contrast spectral optical coherence tomography

Manuel H. De la Torre Ibarra, Pablo D. Ruiz, and Jonathan M. Huntley
Opt. Lett. 34(6) 806-808 (2009)

Compression optical coherence elastography with two-dimensional displacement measurement and local deformation visualization

En Li, Shuichi Makita, Shinnosuke Azuma, Arata Miyazawa, and Yoshiaki Yasuno
Opt. Lett. 44(4) 787-790 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Schmitt, Opt. Express 3, 199 (1998).
    [Crossref]
  2. H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, Biomed. Opt. Express 3, 1025 (2012).
    [Crossref]
  3. K. Kurokawa, S. Makita, Y.-J. Hong, and Y. Yasuno, Biomed. Opt. Express 6, 170 (2015).
  4. R. K. Wang, Z. Ma, and S. J. Kirkpatrick, Appl. Phys. Lett. 89, 144103 (2006).
    [Crossref]
  5. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, Opt. Express 19, 6623 (2011).
    [Crossref]
  6. X. Liu, Y. Huang, and J. U. Kang, Opt. Express 20, 16567 (2012).
    [Crossref]
  7. S. Makita, F. Jaillon, I. Jahan, and Y. Yasuno, Opt. Express 22, 4830 (2014).
    [Crossref]

2015 (1)

2014 (1)

2012 (2)

2011 (1)

2006 (1)

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, Appl. Phys. Lett. 89, 144103 (2006).
[Crossref]

1998 (1)

Adie, S. G.

Bever, M.

Birngruber, R.

Boppart, S. A.

Brinkmann, R.

Debbeler, C.

Gerstmann, D. K.

Hong, Y.-J.

Huang, Y.

Hüttmann, G.

Jahan, I.

Jaillon, F.

Kang, J. U.

Kennedy, B. F.

Kirkpatrick, S. J.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, Appl. Phys. Lett. 89, 144103 (2006).
[Crossref]

Koinzer, S.

Kurokawa, K.

Liang, X.

Liu, X.

Ma, Z.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, Appl. Phys. Lett. 89, 144103 (2006).
[Crossref]

Makita, S.

Müller, H. H.

Ptaszynski, L.

Quirk, B. C.

Sampson, D. D.

Schlott, K.

Schmitt, J.

Wang, R. K.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, Appl. Phys. Lett. 89, 144103 (2006).
[Crossref]

Yasuno, Y.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. OCT system used in the experiments: (a) sample arm for phantom measurements and (b) sample arm for porcine eye measurement.
Fig. 2.
Fig. 2. Representative B-scan of (a) the tissue phantom. The yellow arrow indicates a signal from the glass plate. (b) Means and (c) standard deviations of the mean in-plane displacements. The red crosses and the blue boxes indicate the in-plane lateral and axial translations, respectively. (d) Means and (e) standard deviations of the mean out-of-plane displacements.
Fig. 3.
Fig. 3. In-plane lateral (first row), in-plane axial (second row), and out-of-plane lateral (third row) displacement maps, as well as the displacement vectors superimposed on the intensity image (fourth row) at different time points during coagulation laser irradiation.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ x ( x , z ) = δ x ( ln μ 1 ln μ 2 ) 2 ( ln μ 1 + ln μ 2 2 ln μ 0 ) ,
Δ z ( x , z ) = δ z ( ln μ 3 ln μ 4 ) 2 ( ln μ 3 + ln μ 4 2 ln μ 0 ) ,
w l ( x , z ) = δ x 2 / ( 2 ln μ 0 ln μ 1 ln μ 2 ) ,
w z ( x , z ) = δ z 2 / ( 2 ln μ 0 ln μ 3 ln μ 4 ) ,
| Δ y ( x , z ) | = w l ln μ 0 Δ x 2 / w l 2 Δ z 2 / w z 2 .
| ρ s ( x , z ) | = | x i , z i W g R * ( x i , z i ) g T ( x i , z i ) | x i , z i W | g R * ( x i , z i ) | 2 x i , z i W | g T ( x i , z i ) | 2 × ( 1 + SNR R 1 ( x , z ) ) ( 1 + SNR T 1 ( x , z ) ) ,

Metrics