Abstract

An all-optical frequency and intensity noise suppression technique of a single-frequency fiber laser is demonstrated. By exploiting the recursive noise reduction effect of a semiconductor optical amplifier (SOA) in a self-injection locked fiber laser, the frequency and intensity noise of the laser are remarkably suppressed in a significantly wide frequency range. In addition to the linewidth suppression from 3.5 kHz to 700 Hz, the frequency noise has been reduced by 25dB. After suppression, the relative intensity noise (RIN) is within 5 dB of the shot noise limit at frequencies from 1.5 to 3 MHz, and the frequency range of the suppression reaches about 30 MHz. The relaxation oscillation peak is observed to shift to lower frequencies and is reduced by about 35 dB from 90dB/Hz to 125dB/Hz. It is believed that the achieved low noise makes the fiber laser a promising candidate in applications such as ultra-long haul coherent optical communication and LIDAR.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Linewidth suppression mechanism of self-injection locked single-frequency fiber laser

Xiang Huang, Qilai Zhao, Wei Lin, Can Li, Changsheng Yang, Shupei Mo, Zhouming Feng, Huaqiu Deng, Zhongmin Yang, and Shanhui Xu
Opt. Express 24(17) 18907-18916 (2016)

Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser

Qilai Zhao, Shanhui Xu, Kaijun Zhou, Changsheng Yang, Can Li, Zhouming Feng, Mingying Peng, Huaqiu Deng, and Zhongmin Yang
Opt. Lett. 41(7) 1333-1335 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription