Abstract

In this Letter, we theoretically propose for the first time that graphene monolayers can be used for superscatterer designs. We show that the scattering cross-section of the bare deep-subwavelength dielectric cylinder is markedly enhanced by six orders of magnitude due to the excitation of the first-order resonance of graphene plamons. By utilizing the tunability of the plasmonic resonance through tuning graphene’s chemical potential, the graphene superscatterer works in a wide range of frequencies from several terahertz to tens of terahertz.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Magnetic field control of plasmon polaritons in graphene-covered gyrotropic planar waveguide

Dmitry A. Kuzmin, Igor V. Bychkov, and Vladimir G. Shavrov
Opt. Lett. 40(11) 2557-2560 (2015)

Resonance enhanced absorption in a graphene monolayer using deep metal gratings

B. Zhao, J. M. Zhao, and Z. M. Zhang
J. Opt. Soc. Am. B 32(6) 1176-1185 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription