Abstract

We investigate the uniqueness of the plane-wave decomposition of temporally deterministic, spatially random fields. Specifically, we consider the decomposition of spatially ergodic and, thus, statistically homogeneous fields. We show that when the spatial power spectrum is injective, the plane waves are the only possible coherent modes. Furthermore, the randomness of such fields originates in the spatial spectral phase, i.e., the phase associated with the coefficients of each plane wave in the expansion. By contrast, the spectral amplitude is deterministic and is specified by the spatial power spectrum. We end with a discussion showing how the results can be translated in full to the time domain.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Deterministic signal associated with a random field

Taewoo Kim, Ruoyu Zhu, Tan H. Nguyen, Renjie Zhou, Chris Edwards, Lynford L. Goddard, and Gabriel Popescu
Opt. Express 21(18) 20806-20820 (2013)

Near-field spatial correlations from partially coherent homogeneous planar sources: effects on surface wave excitation

Juan Miguel Auñón and Manuel Nieto-Vesperinas
Opt. Lett. 36(17) 3410-3412 (2011)

Near-field evanescent waves scattered from a spatially deterministic and anisotropic medium

Jia Li, Liping Chang, and Zhefu Wu
Opt. Lett. 40(12) 2680-2683 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription