Abstract

We show that chirped metal-dielectric waveguide arrays with focusing cubic nonlinearity can support plasmonic lattice solitons that undergo self-deflection in the transverse plane. Such lattice solitons are deeply subwavelength self-sustained excitations, although they cover several periods of the array. Upon propagation, the excitations accelerate in the transverse plane and follow trajectories curved in the direction in which the separation between neighboring metallic layers decreases, a phenomenon that yields considerable deflection angles. The deflection angle can be controlled by varying the array chirp. We also reveal the existence of surface modes at the boundary of truncated plasmonic chirped array that form even in the absence of nonlinearity.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmonic lattice solitons

Yao Kou, Fangwei Ye, and Xianfeng Chen
Opt. Lett. 37(18) 3822-3824 (2012)

Surface vector plasmonic lattice solitons in semi-infinite graphene-pair arrays

Zhouqing Wang, Bing Wang, Hua Long, Kai Wang, and Peixiang Lu
Opt. Express 25(17) 20708-20717 (2017)

Plasmonic lattice solitons in nonlinear graphene sheet arrays

Zhouqing Wang, Bing Wang, Hua Long, Kai Wang, and Peixiang Lu
Opt. Express 23(25) 32679-32689 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription