Abstract

Digital inline holographic microscopy is applied for lens-free imaging with high lateral resolution. Microfluidic chambers for the imaging of cells in water-like or native solutions, e.g., thick layers of glass and other materials with different refractive index, cause aberrations that limit the spatial resolution and change the magnification scale. In this Letter, a fast reconstruction technique considering parallel layer systems of different refractive indices is presented. In the experiments, properly scaled images of microbeads and red human blood cells with an optical resolution corresponding to a numerical aperture of about 0.62 were reconstructed.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Self-calibrating lensless inline-holographic microscopy by a sample holder with reference structures

Rainer Riesenberg and Mario Kanka
Opt. Lett. 39(17) 5236-5239 (2014)

Inline digital holographic movie based on a double-sideband filter

Claudio Ramirez, Angel Lizana, Claudio Iemmi, and Juan Campos
Opt. Lett. 40(17) 4142-4145 (2015)

Highly stable digital holographic microscope using Sagnac interferometer

Swapnil Mahajan, Vismay Trivedi, Priyanka Vora, Vani Chhaniwal, Bahram Javidi, and Arun Anand
Opt. Lett. 40(16) 3743-3746 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics