Abstract

We demonstrate that a parallel aligned liquid crystal on silicon (PA-LCOS) spatial light modulator (SLM) without any attached color mask can be used as a full color display with white light illumination. The method is based on the wavelength dependence of the (voltage controlled) birefringence of the liquid crystal pixels. Modern SLMs offer a wide range over which the birefringence can be modulated, leading (in combination with a linear polarizer) to several intensity modulation periods of a reflected light wave as a function of the applied voltage. Because of dispersion, the oscillation period strongly depends on the wavelength. Thus each voltage applied to an SLM pixel corresponds to another reflected color spectrum. For SLMs with a sufficiently broad tuning range, one obtains a color palette (i.e., a “color lookup-table”), which allows one to display color images. An advantage over standard liquid crystal displays (LCDs), which use color masks in front of the individual pixels, is that the light efficiency and the display resolution are increased by a factor of three.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Programmable color tuning of a multiline laser by means of a twisted nematic liquid crystal display

José Luis Martínez, María del Mar Sánchez-López, Pascuala García-Martínez, Ignacio Moreno, and Juan Campos
Appl. Opt. 51(26) 6368-6375 (2012)

Tilt-effect of holograms and images displayed on a spatial light modulator

Walter Harm, Clemens Roider, Stefan Bernet, and Monika Ritsch-Marte
Opt. Express 23(23) 30497-30511 (2015)

Colour hologram projection with an SLM by exploiting its full phase modulation range

Alexander Jesacher, Stefan Bernet, and Monika Ritsch-Marte
Opt. Express 22(17) 20530-20541 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. Koike and K. Okamoto, FUJITSU Sci. Tech. J. 35, 221 (1999).
  2. M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, Opt. Express 18, 8806 (2010).
    [Crossref]
  3. M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk, Opt. Express 20, 25130 (2012).
    [Crossref]
  4. K. Choi, H. Kim, and B. Lee, Opt. Express 12, 5229 (2004).
    [Crossref]
  5. T. Shimobaba, T. Takahashi, N. Masuda, and T. Ito, Opt. Express 19, 10287 (2011).
    [Crossref]
  6. V. Calero, P. García-Martínez, J. Albero, M. M. Sánchez-López, and I. Moreno, Opt. Lett. 38, 4663 (2013).
    [Crossref]
  7. J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, Opt. Lasers Eng. 51, 111 (2013).
  8. A. Jesacher, S. Bernet, and M. Ritsch-Marte, Opt. Express 22, 17590 (2014).
    [Crossref]
  9. A. Jesacher, S. Bernet, and M. Ritsch-Marte, Opt. Express 22, 20530 (2014).
    [Crossref]
  10. A. Jesacher, S. Bernet, and M. Ritsch-Marte, Opt. Lett. 39, 5337 (2014).
    [Crossref]
  11. http://www.ledengin.com/files/products/LZ4/LZ4-00MD00.pdf .
  12. C. Lingel, T. Haist, and W. Osten, Appl. Opt. 52, 6877 (2013).
    [Crossref]
  13. R. W. Floyd and L. Steinberg, Proc. SID 17, 75 (1976).
  14. P. Heckbert, Comput. Graph. 16, 297 (1982).

2014 (3)

2013 (3)

2012 (1)

2011 (1)

2010 (1)

2004 (1)

1999 (1)

Y. Koike and K. Okamoto, FUJITSU Sci. Tech. J. 35, 221 (1999).

1982 (1)

P. Heckbert, Comput. Graph. 16, 297 (1982).

1976 (1)

R. W. Floyd and L. Steinberg, Proc. SID 17, 75 (1976).

Albero, J.

J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, Opt. Lasers Eng. 51, 111 (2013).

V. Calero, P. García-Martínez, J. Albero, M. M. Sánchez-López, and I. Moreno, Opt. Lett. 38, 4663 (2013).
[Crossref]

Bernet, S.

Calero, V.

Choi, K.

Ducin, I.

Ferraro, P.

Finizio, A.

Floyd, R. W.

R. W. Floyd and L. Steinberg, Proc. SID 17, 75 (1976).

García-Martínez, P.

J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, Opt. Lasers Eng. 51, 111 (2013).

V. Calero, P. García-Martínez, J. Albero, M. M. Sánchez-López, and I. Moreno, Opt. Lett. 38, 4663 (2013).
[Crossref]

Haist, T.

Heckbert, P.

P. Heckbert, Comput. Graph. 16, 297 (1982).

Ito, T.

Jesacher, A.

Kakarenko, K.

Kim, H.

Koike, Y.

Y. Koike and K. Okamoto, FUJITSU Sci. Tech. J. 35, 221 (1999).

Kolodziejczyk, A.

Lee, B.

Lingel, C.

Makowski, M.

Martínez, J. L.

J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, Opt. Lasers Eng. 51, 111 (2013).

Masuda, N.

Memmolo, P.

Moreno, I.

J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, Opt. Lasers Eng. 51, 111 (2013).

V. Calero, P. García-Martínez, J. Albero, M. M. Sánchez-López, and I. Moreno, Opt. Lett. 38, 4663 (2013).
[Crossref]

Näsänen, R.

Naughton, T. J.

Okamoto, K.

Y. Koike and K. Okamoto, FUJITSU Sci. Tech. J. 35, 221 (1999).

Osten, W.

Paturzo, M.

Ritsch-Marte, M.

Sánchez-López, M. M.

Shimobaba, T.

Steinberg, L.

R. W. Floyd and L. Steinberg, Proc. SID 17, 75 (1976).

Suszek, J.

Sypek, M.

Takahashi, T.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Setup for color image projection. Light from a white light emitting diode (LED) passes through a linear broad band polarizer which has a 45° orientation with respect to the active optical axis of the liquid crystal layer. The SLM displays a pre-calculated pattern, which modulates the polarization of the reflected light of each pixel individually in broad range. After passing again through the attached polarization filter, each pixel reflects a predefined color. The SLM surface is then sharply imaged with a color camera.
Fig. 2.
Fig. 2. Red, green, and blue components of a white light beam, reflected off the SLM (with attached polarization filter) as a function of the voltage (or gray level) U applied uniformly to all of its pixels. All curves are normalized to their respective maximal values. Below, a colorbar indicates the respective RGB colors, if the three channels are recombined into one color pixel.
Fig. 3.
Fig. 3. Test color images ( 600 × 600 pixels) recorded with the setup displayed in Fig. 1. The upper row shows the master images to be displayed. The second row shows the SLM-generated images, recorded with a color camera. The corresponding SLM patterns were calculated by the direct method, searching the best match to each color pixel in the available color palette. The lowest row shows the results after dithering the displayed SLM pattern with a Floyd–Steinberg error diffusion method, i.e., there the desired color of each pixel is approached by also modifying the colors in its neighborhood.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ x = n λ ( U ) 2 π D λ ,
( Δ C ) 2 = ( Δ C r ) 2 + ( Δ C g ) 2 + ( Δ C r ) 2 .

Metrics