Abstract

Due to their high stiffness-to-weight ratio, glass fiber-reinforced polymers are an attractive material for rotors, e.g., in the aerospace industry. A fundamental understanding of the material behavior requires non-contact, in-situ dynamic deformation measurements. The high surface speeds and particularly the translucence of the material limit the usability of conventional optical measurement techniques. We demonstrate that the laser Doppler distance sensor provides a powerful and reliable tool for monitoring radial expansion at fast rotating translucent materials. We find that backscattering in material volume does not lead to secondary signals as surface scattering results in degradation of the measurement volume inside the translucent medium. This ensures that the acquired signal contains information of the rotor surface only, as long as the sample surface is rough enough. Dynamic deformation measurements of fast-rotating fiber-reinforced polymer composite rotors with surface speeds of more than 300 m/s underline the potential of the laser Doppler sensor.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Distance sensing to rough semitransparent and multiscattering materials using dynamic speckles

Dmitry Semenov, Igor Sidorov, and Ervin Nippolainen
Appl. Opt. 48(28) 5266-5273 (2009)

Deformation-phase measurement of diffuse objects that have started nonrepeatable dynamic deformation

Masaaki Adachi, Jon N. Petzing, and David Kerr
Appl. Opt. 40(34) 6187-6192 (2001)

References

  • View by:
  • |
  • |
  • |

  1. Y. Hon and A. Lam, Optom. Vis. Sci. 90, e1 (2013).
    [Crossref]
  2. C. Bakis, L. Bank, V. Brown, E. Cosenza, J. Davalos, J. Lesko, A. Machida, S. Rizkalla, and T. Triantafillou, J. Compos. Constr. 6, 73 (2002).
    [Crossref]
  3. J. F. Durodola and O. Attia, Compos. Sci. Technol. 60, 987 (2000).
    [Crossref]
  4. R. G. Dorsch, G. Häusler, and J. M. Herrmann, Appl. Opt. 33, 1306 (1994).
    [Crossref]
  5. A. K. Ruprecht, K. Koerner, T. F. Wiesendanger, H. J. Tiziani, and W. Osten, Proc. SPIE 5302, 53 (2004).
    [Crossref]
  6. D. Markl, G. Hannesschläger, A. Buchsbaum, S. Sacher, J. G. Khinast, and M. Leitner, Opt. Lasers Eng. 59, 1 (2014).
    [Crossref]
  7. F. Gasco, P. Feraboli, J. Braun, J. Smith, P. Stickler, and L. DeOto, Compos. Part A Appl. Sci. Manuf. 42, 1263 (2011).
    [Crossref]
  8. D. A. Subramani, V. Ramamurti, and K. Sridhara, J. Strain. Anal. Eng. Des. 32, 119 (1997).
    [Crossref]
  9. R. Kuschmierz, N. Koukourakis, A. Fischer, and J. Czarske, Opt. Lett. 39, 5622 (2014).
    [Crossref]
  10. L. Büttner, T. Pfister, and J. Czarske, Opt. Lett. 31, 1217 (2006).
    [Crossref]
  11. P. Günther, F. Dreier, T. Pfister, J. Czarske, T. Haupt, and W. Hufenbach, Mech. Syst. Signal Process. 25, 319 (2011).
    [Crossref]
  12. T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, Meas. Sci. Technol. 17, 1693 (2006).
    [Crossref]
  13. P. C. Miles, Appl. Opt. 35, 5887 (1996).
    [Crossref]
  14. R. Kuschmierz, A. Filippatos, A. Langkamp, W. Hufenbach, J. W. Czarske, and A. Fischer, Mech. Syst. Signal Process. 54–55, 325 (2015).

2015 (1)

R. Kuschmierz, A. Filippatos, A. Langkamp, W. Hufenbach, J. W. Czarske, and A. Fischer, Mech. Syst. Signal Process. 54–55, 325 (2015).

2014 (2)

D. Markl, G. Hannesschläger, A. Buchsbaum, S. Sacher, J. G. Khinast, and M. Leitner, Opt. Lasers Eng. 59, 1 (2014).
[Crossref]

R. Kuschmierz, N. Koukourakis, A. Fischer, and J. Czarske, Opt. Lett. 39, 5622 (2014).
[Crossref]

2013 (1)

Y. Hon and A. Lam, Optom. Vis. Sci. 90, e1 (2013).
[Crossref]

2011 (2)

F. Gasco, P. Feraboli, J. Braun, J. Smith, P. Stickler, and L. DeOto, Compos. Part A Appl. Sci. Manuf. 42, 1263 (2011).
[Crossref]

P. Günther, F. Dreier, T. Pfister, J. Czarske, T. Haupt, and W. Hufenbach, Mech. Syst. Signal Process. 25, 319 (2011).
[Crossref]

2006 (2)

T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, Meas. Sci. Technol. 17, 1693 (2006).
[Crossref]

L. Büttner, T. Pfister, and J. Czarske, Opt. Lett. 31, 1217 (2006).
[Crossref]

2004 (1)

A. K. Ruprecht, K. Koerner, T. F. Wiesendanger, H. J. Tiziani, and W. Osten, Proc. SPIE 5302, 53 (2004).
[Crossref]

2002 (1)

C. Bakis, L. Bank, V. Brown, E. Cosenza, J. Davalos, J. Lesko, A. Machida, S. Rizkalla, and T. Triantafillou, J. Compos. Constr. 6, 73 (2002).
[Crossref]

2000 (1)

J. F. Durodola and O. Attia, Compos. Sci. Technol. 60, 987 (2000).
[Crossref]

1997 (1)

D. A. Subramani, V. Ramamurti, and K. Sridhara, J. Strain. Anal. Eng. Des. 32, 119 (1997).
[Crossref]

1996 (1)

1994 (1)

Attia, O.

J. F. Durodola and O. Attia, Compos. Sci. Technol. 60, 987 (2000).
[Crossref]

Bakis, C.

C. Bakis, L. Bank, V. Brown, E. Cosenza, J. Davalos, J. Lesko, A. Machida, S. Rizkalla, and T. Triantafillou, J. Compos. Constr. 6, 73 (2002).
[Crossref]

Bank, L.

C. Bakis, L. Bank, V. Brown, E. Cosenza, J. Davalos, J. Lesko, A. Machida, S. Rizkalla, and T. Triantafillou, J. Compos. Constr. 6, 73 (2002).
[Crossref]

Braun, J.

F. Gasco, P. Feraboli, J. Braun, J. Smith, P. Stickler, and L. DeOto, Compos. Part A Appl. Sci. Manuf. 42, 1263 (2011).
[Crossref]

Brown, V.

C. Bakis, L. Bank, V. Brown, E. Cosenza, J. Davalos, J. Lesko, A. Machida, S. Rizkalla, and T. Triantafillou, J. Compos. Constr. 6, 73 (2002).
[Crossref]

Buchsbaum, A.

D. Markl, G. Hannesschläger, A. Buchsbaum, S. Sacher, J. G. Khinast, and M. Leitner, Opt. Lasers Eng. 59, 1 (2014).
[Crossref]

Büttner, L.

T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, Meas. Sci. Technol. 17, 1693 (2006).
[Crossref]

L. Büttner, T. Pfister, and J. Czarske, Opt. Lett. 31, 1217 (2006).
[Crossref]

Cosenza, E.

C. Bakis, L. Bank, V. Brown, E. Cosenza, J. Davalos, J. Lesko, A. Machida, S. Rizkalla, and T. Triantafillou, J. Compos. Constr. 6, 73 (2002).
[Crossref]

Czarske, J.

R. Kuschmierz, N. Koukourakis, A. Fischer, and J. Czarske, Opt. Lett. 39, 5622 (2014).
[Crossref]

P. Günther, F. Dreier, T. Pfister, J. Czarske, T. Haupt, and W. Hufenbach, Mech. Syst. Signal Process. 25, 319 (2011).
[Crossref]

T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, Meas. Sci. Technol. 17, 1693 (2006).
[Crossref]

L. Büttner, T. Pfister, and J. Czarske, Opt. Lett. 31, 1217 (2006).
[Crossref]

Czarske, J. W.

R. Kuschmierz, A. Filippatos, A. Langkamp, W. Hufenbach, J. W. Czarske, and A. Fischer, Mech. Syst. Signal Process. 54–55, 325 (2015).

Davalos, J.

C. Bakis, L. Bank, V. Brown, E. Cosenza, J. Davalos, J. Lesko, A. Machida, S. Rizkalla, and T. Triantafillou, J. Compos. Constr. 6, 73 (2002).
[Crossref]

DeOto, L.

F. Gasco, P. Feraboli, J. Braun, J. Smith, P. Stickler, and L. DeOto, Compos. Part A Appl. Sci. Manuf. 42, 1263 (2011).
[Crossref]

Dorsch, R. G.

Dreier, F.

P. Günther, F. Dreier, T. Pfister, J. Czarske, T. Haupt, and W. Hufenbach, Mech. Syst. Signal Process. 25, 319 (2011).
[Crossref]

Durodola, J. F.

J. F. Durodola and O. Attia, Compos. Sci. Technol. 60, 987 (2000).
[Crossref]

Feraboli, P.

F. Gasco, P. Feraboli, J. Braun, J. Smith, P. Stickler, and L. DeOto, Compos. Part A Appl. Sci. Manuf. 42, 1263 (2011).
[Crossref]

Filippatos, A.

R. Kuschmierz, A. Filippatos, A. Langkamp, W. Hufenbach, J. W. Czarske, and A. Fischer, Mech. Syst. Signal Process. 54–55, 325 (2015).

Fischer, A.

R. Kuschmierz, A. Filippatos, A. Langkamp, W. Hufenbach, J. W. Czarske, and A. Fischer, Mech. Syst. Signal Process. 54–55, 325 (2015).

R. Kuschmierz, N. Koukourakis, A. Fischer, and J. Czarske, Opt. Lett. 39, 5622 (2014).
[Crossref]

Gasco, F.

F. Gasco, P. Feraboli, J. Braun, J. Smith, P. Stickler, and L. DeOto, Compos. Part A Appl. Sci. Manuf. 42, 1263 (2011).
[Crossref]

Günther, P.

P. Günther, F. Dreier, T. Pfister, J. Czarske, T. Haupt, and W. Hufenbach, Mech. Syst. Signal Process. 25, 319 (2011).
[Crossref]

Hannesschläger, G.

D. Markl, G. Hannesschläger, A. Buchsbaum, S. Sacher, J. G. Khinast, and M. Leitner, Opt. Lasers Eng. 59, 1 (2014).
[Crossref]

Haupt, T.

P. Günther, F. Dreier, T. Pfister, J. Czarske, T. Haupt, and W. Hufenbach, Mech. Syst. Signal Process. 25, 319 (2011).
[Crossref]

Häusler, G.

Herrmann, J. M.

Hon, Y.

Y. Hon and A. Lam, Optom. Vis. Sci. 90, e1 (2013).
[Crossref]

Hufenbach, W.

R. Kuschmierz, A. Filippatos, A. Langkamp, W. Hufenbach, J. W. Czarske, and A. Fischer, Mech. Syst. Signal Process. 54–55, 325 (2015).

P. Günther, F. Dreier, T. Pfister, J. Czarske, T. Haupt, and W. Hufenbach, Mech. Syst. Signal Process. 25, 319 (2011).
[Crossref]

Khinast, J. G.

D. Markl, G. Hannesschläger, A. Buchsbaum, S. Sacher, J. G. Khinast, and M. Leitner, Opt. Lasers Eng. 59, 1 (2014).
[Crossref]

Koerner, K.

A. K. Ruprecht, K. Koerner, T. F. Wiesendanger, H. J. Tiziani, and W. Osten, Proc. SPIE 5302, 53 (2004).
[Crossref]

Koukourakis, N.

Krain, H.

T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, Meas. Sci. Technol. 17, 1693 (2006).
[Crossref]

Kuschmierz, R.

R. Kuschmierz, A. Filippatos, A. Langkamp, W. Hufenbach, J. W. Czarske, and A. Fischer, Mech. Syst. Signal Process. 54–55, 325 (2015).

R. Kuschmierz, N. Koukourakis, A. Fischer, and J. Czarske, Opt. Lett. 39, 5622 (2014).
[Crossref]

Lam, A.

Y. Hon and A. Lam, Optom. Vis. Sci. 90, e1 (2013).
[Crossref]

Langkamp, A.

R. Kuschmierz, A. Filippatos, A. Langkamp, W. Hufenbach, J. W. Czarske, and A. Fischer, Mech. Syst. Signal Process. 54–55, 325 (2015).

Leitner, M.

D. Markl, G. Hannesschläger, A. Buchsbaum, S. Sacher, J. G. Khinast, and M. Leitner, Opt. Lasers Eng. 59, 1 (2014).
[Crossref]

Lesko, J.

C. Bakis, L. Bank, V. Brown, E. Cosenza, J. Davalos, J. Lesko, A. Machida, S. Rizkalla, and T. Triantafillou, J. Compos. Constr. 6, 73 (2002).
[Crossref]

Machida, A.

C. Bakis, L. Bank, V. Brown, E. Cosenza, J. Davalos, J. Lesko, A. Machida, S. Rizkalla, and T. Triantafillou, J. Compos. Constr. 6, 73 (2002).
[Crossref]

Markl, D.

D. Markl, G. Hannesschläger, A. Buchsbaum, S. Sacher, J. G. Khinast, and M. Leitner, Opt. Lasers Eng. 59, 1 (2014).
[Crossref]

Miles, P. C.

Osten, W.

A. K. Ruprecht, K. Koerner, T. F. Wiesendanger, H. J. Tiziani, and W. Osten, Proc. SPIE 5302, 53 (2004).
[Crossref]

Pfister, T.

P. Günther, F. Dreier, T. Pfister, J. Czarske, T. Haupt, and W. Hufenbach, Mech. Syst. Signal Process. 25, 319 (2011).
[Crossref]

T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, Meas. Sci. Technol. 17, 1693 (2006).
[Crossref]

L. Büttner, T. Pfister, and J. Czarske, Opt. Lett. 31, 1217 (2006).
[Crossref]

Ramamurti, V.

D. A. Subramani, V. Ramamurti, and K. Sridhara, J. Strain. Anal. Eng. Des. 32, 119 (1997).
[Crossref]

Rizkalla, S.

C. Bakis, L. Bank, V. Brown, E. Cosenza, J. Davalos, J. Lesko, A. Machida, S. Rizkalla, and T. Triantafillou, J. Compos. Constr. 6, 73 (2002).
[Crossref]

Ruprecht, A. K.

A. K. Ruprecht, K. Koerner, T. F. Wiesendanger, H. J. Tiziani, and W. Osten, Proc. SPIE 5302, 53 (2004).
[Crossref]

Sacher, S.

D. Markl, G. Hannesschläger, A. Buchsbaum, S. Sacher, J. G. Khinast, and M. Leitner, Opt. Lasers Eng. 59, 1 (2014).
[Crossref]

Schodl, R.

T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, Meas. Sci. Technol. 17, 1693 (2006).
[Crossref]

Smith, J.

F. Gasco, P. Feraboli, J. Braun, J. Smith, P. Stickler, and L. DeOto, Compos. Part A Appl. Sci. Manuf. 42, 1263 (2011).
[Crossref]

Sridhara, K.

D. A. Subramani, V. Ramamurti, and K. Sridhara, J. Strain. Anal. Eng. Des. 32, 119 (1997).
[Crossref]

Stickler, P.

F. Gasco, P. Feraboli, J. Braun, J. Smith, P. Stickler, and L. DeOto, Compos. Part A Appl. Sci. Manuf. 42, 1263 (2011).
[Crossref]

Subramani, D. A.

D. A. Subramani, V. Ramamurti, and K. Sridhara, J. Strain. Anal. Eng. Des. 32, 119 (1997).
[Crossref]

Tiziani, H. J.

A. K. Ruprecht, K. Koerner, T. F. Wiesendanger, H. J. Tiziani, and W. Osten, Proc. SPIE 5302, 53 (2004).
[Crossref]

Triantafillou, T.

C. Bakis, L. Bank, V. Brown, E. Cosenza, J. Davalos, J. Lesko, A. Machida, S. Rizkalla, and T. Triantafillou, J. Compos. Constr. 6, 73 (2002).
[Crossref]

Wiesendanger, T. F.

A. K. Ruprecht, K. Koerner, T. F. Wiesendanger, H. J. Tiziani, and W. Osten, Proc. SPIE 5302, 53 (2004).
[Crossref]

Appl. Opt. (2)

Compos. Part A Appl. Sci. Manuf. (1)

F. Gasco, P. Feraboli, J. Braun, J. Smith, P. Stickler, and L. DeOto, Compos. Part A Appl. Sci. Manuf. 42, 1263 (2011).
[Crossref]

Compos. Sci. Technol. (1)

J. F. Durodola and O. Attia, Compos. Sci. Technol. 60, 987 (2000).
[Crossref]

J. Compos. Constr. (1)

C. Bakis, L. Bank, V. Brown, E. Cosenza, J. Davalos, J. Lesko, A. Machida, S. Rizkalla, and T. Triantafillou, J. Compos. Constr. 6, 73 (2002).
[Crossref]

J. Strain. Anal. Eng. Des. (1)

D. A. Subramani, V. Ramamurti, and K. Sridhara, J. Strain. Anal. Eng. Des. 32, 119 (1997).
[Crossref]

Meas. Sci. Technol. (1)

T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, Meas. Sci. Technol. 17, 1693 (2006).
[Crossref]

Mech. Syst. Signal Process. (2)

P. Günther, F. Dreier, T. Pfister, J. Czarske, T. Haupt, and W. Hufenbach, Mech. Syst. Signal Process. 25, 319 (2011).
[Crossref]

R. Kuschmierz, A. Filippatos, A. Langkamp, W. Hufenbach, J. W. Czarske, and A. Fischer, Mech. Syst. Signal Process. 54–55, 325 (2015).

Opt. Lasers Eng. (1)

D. Markl, G. Hannesschläger, A. Buchsbaum, S. Sacher, J. G. Khinast, and M. Leitner, Opt. Lasers Eng. 59, 1 (2014).
[Crossref]

Opt. Lett. (2)

Optom. Vis. Sci. (1)

Y. Hon and A. Lam, Optom. Vis. Sci. 90, e1 (2013).
[Crossref]

Proc. SPIE (1)

A. K. Ruprecht, K. Koerner, T. F. Wiesendanger, H. J. Tiziani, and W. Osten, Proc. SPIE 5302, 53 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Measurement setup of the laser Doppler distance sensor.
Fig. 2.
Fig. 2. Scheme (not to scale) of undisturbed diverging interference fringe system (left) and deformation due to refraction at the material (right).
Fig. 3.
Fig. 3. Measured fringe spacings d ± ( z ) in air and calculated fringe spacings according to Eq. (3) with medium placed at z = 0 .
Fig. 4.
Fig. 4. Spectrum of interference fringe system with diverging fringe spacing d + for varying surface roughness. Calculated Doppler frequencies and corresponding error margins are represented by orange bars. The variation of the Doppler peak values is caused by slightly different layer thicknesses (left). Measurement setup (right).
Fig. 5.
Fig. 5. Simulation of measurement volume inside acrylic glass samples for surfaces located at z = 0 . The interference fringe system deteriorates with increasing surface roughness.
Fig. 6.
Fig. 6. Line profiles simulated at z = 20 μm for increasing surface roughness (top) and corresponding Fourier transform (bottom) for acrylic glass (left) and GFRP (right). The roughness R A of the acrylic glass samples #1−#3 are marked by orange lines, the roughness of the investigated rotor is marked green, and corresponding thresholds are indicated by white dashed lines.
Fig. 7.
Fig. 7. Uncertainties due to systematic (left) and random (right) errors for measurements on translucent rotors. The apparent decrease of random errors with velocity is an effect of systematic rotor instabilities at low velocities.
Fig. 8.
Fig. 8. Schematic depiction of measurement setup consisting of three evenly distributed LDD sensors (left). Dynamic expansion of rotor at different rotation frequencies (right). The initial radius is r 0 = 25 cm , and Δ r denotes radius expansion.

Tables (1)

Tables Icon

Table 1. Surface Parameters of Acrylic Glass and GFRP Rotors a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

z = q 1 ( f D f D + ) , v 1 2 [ f D + d + ( z ) + f D d ( z ) ]
q ( z ) = d + ( z ) d ( z ) = f D f D +
d ± ( z ) = λ 2 θ [ 1 + ( n 2 θ 2 ) [ z 2 ( n 2 θ 2 ) n 4 z z R ] n 8 z R 2 + ( n 8 n 6 θ 2 ) ( n 2 z R 2 z R z ) ]
Δ d ± d ± 2 with Δ d ± = | d ± θ | α th .

Metrics