Abstract

Mode content measurements with a scanning ring cavity were performed in order to determine the TEM00 mode content of the output beam profile of a resonantly enhanced leakage channel fiber. The measurements were performed at 1.0 and 1.5 μm. In addition, the influence of different bending diameters as well as launching conditions has been investigated. Furthermore, a numerical simulation was used to determine the maximum theoretical TEM00 overlap, if only the fundamental fiber mode is guided. The simulation was also used to analyze how the TEM00 overlap for the case of any additional higher order fiber mode can be determined consistently.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of higher-order mode suppression and Q-switched laser performance in thulium-doped large mode area and photonic crystal fibers

Pankaj Kadwani, Clemence Jollivet, R. Andrew Sims, Axel Schülzgen, Lawrence Shah, and Martin Richardson
Opt. Express 20(22) 24295-24303 (2012)

Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers

Guancheng Gu, Fanting Kong, Thomas W. Hawkins, Paul Foy, Kanxian Wei, Bryce Samson, and Liang Dong
Opt. Express 21(20) 24039-24048 (2013)

Leakage channel optical fibers with large effective area

Liang Dong, Xiang Peng, and Jun Li
J. Opt. Soc. Am. B 24(8) 1689-1697 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription