Abstract

Scanning laser ophthalmoscopy (SLO) employs the eye’s optics as a microscope objective for retinal imaging in vivo. The mouse retina has become an increasingly important object for investigation of ocular disease and physiology with optogenetic probes. SLO imaging of the mouse eye, in principle, can achieve submicron lateral resolution thanks to a numerical aperture (NA) of 0.5, about 2.5 times larger than that of the human eye. In the absence of adaptive optics, however, natural ocular aberrations limit the available optical resolution. The use of a contact lens, in principle, can correct many aberrations, permitting the use of a wider scanning beam and, thus, achieving greater resolution then would otherwise be possible. In this Letter, using an SLO equipped with a rigid contact lens, we report the effect of scanning beam size on the lateral resolution of mouse retinal imaging. Theory predicts that the maximum beam size full width at half-maximum (FWHM) that can be used without any deteriorating effects of aberrations is 0.6mm. However, increasing the beam size up to the diameter of the dilated pupil is predicted to improve lateral resolution, though not to the diffraction limit. To test these predictions, the dendrites of a retinal ganglion cell expressing YFP were imaged, and transverse scans were analyzed to quantify the SLO system resolution. The results confirmed that lateral resolution increases with the beam size as predicted. With a 1.3 mm scanning beam and no high-order aberration correction, the lateral resolution is 1.15μm, superior to that achievable by most human AO-SLO systems. Advantages of this approach include stabilization of the mouse eye and simplified optical design.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Adaptive optics retinal imaging in the living mouse eye

Ying Geng, Alfredo Dubra, Lu Yin, William H. Merigan, Robin Sharma, Richard T. Libby, and David R. Williams
Biomed. Opt. Express 3(4) 715-734 (2012)

Sensorless adaptive optics multimodal en-face small animal retinal imaging

Daniel J. Wahl, Ringo Ng, Myeong Jin Ju, Yifan Jian, and Marinko V. Sarunic
Biomed. Opt. Express 10(1) 252-267 (2019)

Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice

Daniel J. Wahl, Yifan Jian, Stefano Bonora, Robert J. Zawadzki, and Marinko V. Sarunic
Biomed. Opt. Express 7(1) 1-12 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription