Abstract

We have developed a noncontact, photothermal materials characterization method based on visible-light speckle imaging. This technique is applied to remotely measure the infrared absorption spectra of materials and to discriminate materials based on their thermal conductivities. A wavelength-tunable (7.5–8.7 μm), intensity-modulated, quantum cascade pump laser and a continuous-wave 532 nm probe laser illuminate a sample surface such that the two laser spots overlap. Surface absorption of the intensity-modulated pump laser induces a time-varying thermoelastic surface deformation, resulting in a time-varying 532 nm scattering speckle field from the surface. The speckle modulation amplitude, derived from a series of visible camera images, is found to correlate with the amplitude of the surface motion. By tuning the pump laser’s wavelength over a molecular absorption feature, the amplitude spectrum of the speckle modulation is found to correlate to the IR absorption spectrum. As an example, we demonstrate this technique for spectroscopic identification of thin polymeric films. Furthermore, by adjusting the rate of modulation of the pump beam and measuring the associated modulation transfer to the visible speckle pattern, information about the thermal time constants of surface and sub-surface features can be revealed. Using this approach, we demonstrate the ability to distinguish between different materials (including metals, semiconductors, and insulators) based on differences in their thermal conductivities.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatially-resolved individual particle spectroscopy using photothermal modulation of Mie scattering

R. M. Sullenberger, S. M. Redmond, D. Crompton, A. M. Stolyarov, and W. D. Herzog
Opt. Lett. 42(2) 203-206 (2017)

Label-free imaging of melanoma with nonlinear photothermal microscopy

Jinping He, Jun Miyazaki, Nan Wang, Hiromichi Tsurui, and Takayoshi Kobayashi
Opt. Lett. 40(7) 1141-1144 (2015)

Interferometry-free noncontact photoacoustic detection method based on speckle correlation change

Huanhao Li, Fei Cao, Yingying zhou, Zhipeng yu, and Puxiang Lai
Opt. Lett. 44(22) 5481-5484 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).
  2. J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
    [Crossref]
  3. C. Regan, J. C. Ramirez-San-Juan, and B. Choi, Opt. Lett. 39, 5006 (2014).
    [Crossref]
  4. O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photonics 8, 784 (2014).
    [Crossref]
  5. Z. Zalevsky, Y. Beiderman, I. Margalit, S. Gingold, M. Teicher, V. Mico, and J. Garcia, Opt. Express 17, 21566 (2009).
    [Crossref]
  6. R. S. Sirohi, Speckle Metrology (Marcel Dekker, 1993).
  7. S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, 1996).
  8. S. Ameri, E. A. Ash, V. Neuman, and C. R. Petts, Electron. Lett. 17, 337 (1981).
    [Crossref]
  9. M. A. Olmstead, N. M. Amer, and S. Kohn, Appl. Phys. A 32, 141 (1983).
    [Crossref]
  10. A. C. Boccara and D. Fournier, Opt. Lett. 5, 377 (1980).
    [Crossref]
  11. R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, J. Phys. D 45, 125101 (2012).
    [Crossref]
  12. N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, Appl. Phys. Lett. 91, 191908 (2007).
    [Crossref]
  13. N. G. C. Astrath, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, and S. E. Bialkowski, Nat. Commun. 5, 4363 (2014).
    [Crossref]
  14. J. V. Beck, Int. J. Heat Mass Transfer 24, 155 (1981).
    [Crossref]

2014 (3)

C. Regan, J. C. Ramirez-San-Juan, and B. Choi, Opt. Lett. 39, 5006 (2014).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photonics 8, 784 (2014).
[Crossref]

N. G. C. Astrath, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, and S. E. Bialkowski, Nat. Commun. 5, 4363 (2014).
[Crossref]

2012 (1)

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, J. Phys. D 45, 125101 (2012).
[Crossref]

2009 (1)

2007 (1)

N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, Appl. Phys. Lett. 91, 191908 (2007).
[Crossref]

1996 (1)

J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
[Crossref]

1983 (1)

M. A. Olmstead, N. M. Amer, and S. Kohn, Appl. Phys. A 32, 141 (1983).
[Crossref]

1981 (2)

S. Ameri, E. A. Ash, V. Neuman, and C. R. Petts, Electron. Lett. 17, 337 (1981).
[Crossref]

J. V. Beck, Int. J. Heat Mass Transfer 24, 155 (1981).
[Crossref]

1980 (1)

Amer, N. M.

M. A. Olmstead, N. M. Amer, and S. Kohn, Appl. Phys. A 32, 141 (1983).
[Crossref]

Ameri, S.

S. Ameri, E. A. Ash, V. Neuman, and C. R. Petts, Electron. Lett. 17, 337 (1981).
[Crossref]

Ash, E. A.

S. Ameri, E. A. Ash, V. Neuman, and C. R. Petts, Electron. Lett. 17, 337 (1981).
[Crossref]

Astrath, N. G. C.

N. G. C. Astrath, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, and S. E. Bialkowski, Nat. Commun. 5, 4363 (2014).
[Crossref]

N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, Appl. Phys. Lett. 91, 191908 (2007).
[Crossref]

Baesso, M. L.

N. G. C. Astrath, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, and S. E. Bialkowski, Nat. Commun. 5, 4363 (2014).
[Crossref]

N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, Appl. Phys. Lett. 91, 191908 (2007).
[Crossref]

Beck, J. V.

J. V. Beck, Int. J. Heat Mass Transfer 24, 155 (1981).
[Crossref]

Beiderman, Y.

Bento, A. C.

N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, Appl. Phys. Lett. 91, 191908 (2007).
[Crossref]

Bialkowski, S. E.

N. G. C. Astrath, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, and S. E. Bialkowski, Nat. Commun. 5, 4363 (2014).
[Crossref]

S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, 1996).

Boccara, A. C.

Briers, J. D.

J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
[Crossref]

Choi, B.

Farahi, R. H.

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, J. Phys. D 45, 125101 (2012).
[Crossref]

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photonics 8, 784 (2014).
[Crossref]

Fournier, D.

Garcia, J.

Gigan, S.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photonics 8, 784 (2014).
[Crossref]

Gingold, S.

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photonics 8, 784 (2014).
[Crossref]

Katz, O.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photonics 8, 784 (2014).
[Crossref]

Kohn, S.

M. A. Olmstead, N. M. Amer, and S. Kohn, Appl. Phys. A 32, 141 (1983).
[Crossref]

Lukasievicz, G. V. B.

N. G. C. Astrath, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, and S. E. Bialkowski, Nat. Commun. 5, 4363 (2014).
[Crossref]

Malacarne, L. C.

N. G. C. Astrath, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, and S. E. Bialkowski, Nat. Commun. 5, 4363 (2014).
[Crossref]

N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, Appl. Phys. Lett. 91, 191908 (2007).
[Crossref]

Margalit, I.

Mico, V.

Neuman, V.

S. Ameri, E. A. Ash, V. Neuman, and C. R. Petts, Electron. Lett. 17, 337 (1981).
[Crossref]

Olmstead, M. A.

M. A. Olmstead, N. M. Amer, and S. Kohn, Appl. Phys. A 32, 141 (1983).
[Crossref]

Passian, A.

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, J. Phys. D 45, 125101 (2012).
[Crossref]

Pedreira, P. R. B.

N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, Appl. Phys. Lett. 91, 191908 (2007).
[Crossref]

Petts, C. R.

S. Ameri, E. A. Ash, V. Neuman, and C. R. Petts, Electron. Lett. 17, 337 (1981).
[Crossref]

Ramirez-San-Juan, J. C.

Regan, C.

Shen, J.

N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, Appl. Phys. Lett. 91, 191908 (2007).
[Crossref]

Sirohi, R. S.

R. S. Sirohi, Speckle Metrology (Marcel Dekker, 1993).

Teicher, M.

Tetard, L.

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, J. Phys. D 45, 125101 (2012).
[Crossref]

Thundat, T.

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, J. Phys. D 45, 125101 (2012).
[Crossref]

Webster, S.

J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
[Crossref]

Zalevsky, Z.

Appl. Phys. A (1)

M. A. Olmstead, N. M. Amer, and S. Kohn, Appl. Phys. A 32, 141 (1983).
[Crossref]

Appl. Phys. Lett. (1)

N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, Appl. Phys. Lett. 91, 191908 (2007).
[Crossref]

Electron. Lett. (1)

S. Ameri, E. A. Ash, V. Neuman, and C. R. Petts, Electron. Lett. 17, 337 (1981).
[Crossref]

Int. J. Heat Mass Transfer (1)

J. V. Beck, Int. J. Heat Mass Transfer 24, 155 (1981).
[Crossref]

J. Biomed. Opt. (1)

J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
[Crossref]

J. Phys. D (1)

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, J. Phys. D 45, 125101 (2012).
[Crossref]

Nat. Commun. (1)

N. G. C. Astrath, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, and S. E. Bialkowski, Nat. Commun. 5, 4363 (2014).
[Crossref]

Nat. Photonics (1)

O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photonics 8, 784 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Other (3)

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

R. S. Sirohi, Speckle Metrology (Marcel Dekker, 1993).

S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. PSM measurement scheme. (a) [Left] Tunable infrared laser (pump) and a 532 nm visible laser (probe) are projected onto the same location of a sample of interest such that their laser spots are coincident. A visible camera monitors changes in the visible laser speckle pattern as the sample’s surface is periodically heated and cooled by the modulated infrared laser. [Right] Illustration of the speckle pattern when the pump laser is on (green) and off (black). (b) Series of speckle images are captured by the visible camera. (c) FFT spectra of each pixel through the image stack are averaged together, exposing the PSM signal which exists at the infrared modulation frequency.
Fig. 2.
Fig. 2. Photothermal surface deformation simulations using finite element analysis (Nastran) for a single cycle of a 1 mW average power (50% duty cycle, spot size FWHM = 0.6 mm ), 20 Hz pump excitation beam incident onto a PMMA block. (a) Peak surface temperature response transient. (b) Normal-to-surface deformations of the surface at the start, middle, and end of a heating cycle. (c) In-plane, or radial deformations. Deformations are shown as a function of distance from the center of the heating spot.
Fig. 3.
Fig. 3. PSM for spectroscopic materials analysis. PSM spectra of (top) a 2 μm Teflon AF film on a KBr substrate, (middle) a 10.4 μm PMMA film on a KBr substrate, and (bottom) a 4.4 μm PDMS film on a KBr substrate.
Fig. 4.
Fig. 4. Photothermal speckle modulation for thermal conductivity discrimination. Differences in PSM signal as a function of IR modulation frequency enables discriminating between (a) materials with different thermal conductivities and (b) different sub-surface materials with the same surface-coated material.

Metrics