Abstract

We report on a method to obtain confocal imaging through multimode fibers using optical correlation. First, we measure the fiber’s transmission matrix in a calibration step. This allows us to create focused spots at one end of the fiber by shaping the wavefront sent into it from the opposite end. These spots are scanned over a sample, and the light returning from the sample via the fiber is optically correlated with the input pattern. We show that this achieves spatial selectivity in the detection. The technique is demonstrated on microbeads, a dried epithelial cell, and a cover glass.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Digital confocal microscopy through a multimode fiber

Damien Loterie, Salma Farahi, Ioannis Papadopoulos, Alexandre Goy, Demetri Psaltis, and Christophe Moser
Opt. Express 23(18) 23845-23858 (2015)

Dynamic bending compensation while focusing through a multimode fiber

Salma Farahi, David Ziegler, Ioannis N. Papadopoulos, Demetri Psaltis, and Christophe Moser
Opt. Express 21(19) 22504-22514 (2013)

Delivery of focused short pulses through a multimode fiber

Edgar E. Morales-Delgado, Salma Farahi, Ioannis N. Papadopoulos, Demetri Psaltis, and Christophe Moser
Opt. Express 23(7) 9109-9120 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. Spitz and A. Werts, C. R. Acad. Sci. Ser. B 264, 1015 (1967), .
  2. A. Yariv, Appl. Phys. Lett. 28, 88 (1976).
    [Crossref]
  3. A. Friesem, U. Levy, and Y. Silberberg, Proc. IEEE 71, 208 (1983).
    [Crossref]
  4. I. M. Vellekoop and A. P. Mosk, Opt. Lett. 32, 2309 (2007).
    [Crossref]
  5. R. Di Leonardo and S. Bianchi, Opt. Express 19, 247 (2011).
  6. T. Čižmár and K. Dholakia, Nat. Commun. 3, 1027 (2012).
    [Crossref]
  7. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, Biomed. Opt. Express 4, 260 (2013).
    [Crossref]
  8. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
    [Crossref]
  9. A. M. Caravaca Aguirre and R. Piestun, Latin America Optics and Photonics Conference Technical Digest (Optical Society of America, 2014), p. LTh4A.23.
  10. M. Plöschner, T. Tyc, and T. Čižmár, Nat. Photonics 9, 529 (2015).
    [Crossref]
  11. S. Farahi, D. Ziegler, I. N. Papadopoulos, D. Psaltis, and C. Moser, Opt. Express 21, 22504 (2013).
    [Crossref]
  12. A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, Opt. Express 21, 12881 (2013).
    [Crossref]
  13. S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” arXiv: 1506.08586 (2015).
  14. R. Y. Gu, R. N. Mahalati, and J. M. Kahn, Opt. Express 23, 26905 (2015).
    [Crossref]
  15. S. A. Goorden, J. Bertolotti, and A. P. Mosk, Opt. Express 22, 17999 (2014).
    [Crossref]
  16. E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, Opt. Express 23, 9109 (2015).
    [Crossref]
  17. G. P. J. Laporte, N. Stasio, C. Moser, and D. Psaltis, Opt. Express 23, 27484 (2015).
    [Crossref]
  18. D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, Opt. Express 23, 23845 (2015).
    [Crossref]
  19. S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, New J. Phys. 13, 123021 (2011).
    [Crossref]
  20. D. Loterie, S. Farahi, D. Psaltis, and C. Moser, Proc. SPIE 9335, 93350I (2015).
  21. A. Yariv, Opt. Lett. 16, 1376 (1991).
    [Crossref]
  22. A. Vander Lugt, IEEE Trans. Inf. Theory 10, 139 (1964).
    [Crossref]
  23. J. L. Horner and P. D. Gianino, Appl. Opt. 23, 812 (1984).
    [Crossref]
  24. S. A. Goorden, M. Horstmann, A. P. Mosk, B. Škorić, and P. W. H. Pinkse, Optica 1, 421 (2014).
    [Crossref]

2015 (6)

2014 (2)

2013 (3)

2012 (2)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

T. Čižmár and K. Dholakia, Nat. Commun. 3, 1027 (2012).
[Crossref]

2011 (2)

R. Di Leonardo and S. Bianchi, Opt. Express 19, 247 (2011).

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, New J. Phys. 13, 123021 (2011).
[Crossref]

2007 (1)

1991 (1)

1984 (1)

1983 (1)

A. Friesem, U. Levy, and Y. Silberberg, Proc. IEEE 71, 208 (1983).
[Crossref]

1976 (1)

A. Yariv, Appl. Phys. Lett. 28, 88 (1976).
[Crossref]

1967 (1)

E. Spitz and A. Werts, C. R. Acad. Sci. Ser. B 264, 1015 (1967), .

1964 (1)

A. Vander Lugt, IEEE Trans. Inf. Theory 10, 139 (1964).
[Crossref]

Bertolotti, J.

Bianchi, S.

Boccara, A. C.

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, New J. Phys. 13, 123021 (2011).
[Crossref]

Caravaca Aguirre, A. M.

A. M. Caravaca Aguirre and R. Piestun, Latin America Optics and Photonics Conference Technical Digest (Optical Society of America, 2014), p. LTh4A.23.

Caravaca-Aguirre, A. M.

Choi, W.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Cižmár, T.

M. Plöschner, T. Tyc, and T. Čižmár, Nat. Photonics 9, 529 (2015).
[Crossref]

T. Čižmár and K. Dholakia, Nat. Commun. 3, 1027 (2012).
[Crossref]

Conkey, D. B.

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Dholakia, K.

T. Čižmár and K. Dholakia, Nat. Commun. 3, 1027 (2012).
[Crossref]

Di Leonardo, R.

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Farahi, S.

Fink, M.

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, New J. Phys. 13, 123021 (2011).
[Crossref]

Friesem, A.

A. Friesem, U. Levy, and Y. Silberberg, Proc. IEEE 71, 208 (1983).
[Crossref]

Gianino, P. D.

Gigan, S.

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, New J. Phys. 13, 123021 (2011).
[Crossref]

Gilboa, D.

S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” arXiv: 1506.08586 (2015).

Goorden, S. A.

Goy, A.

Gu, R. Y.

Horner, J. L.

Horstmann, M.

Kahn, J. M.

Katz, O.

S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” arXiv: 1506.08586 (2015).

Kim, M.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Laporte, G. P. J.

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Lerosey, G.

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, New J. Phys. 13, 123021 (2011).
[Crossref]

Levy, U.

A. Friesem, U. Levy, and Y. Silberberg, Proc. IEEE 71, 208 (1983).
[Crossref]

Loterie, D.

D. Loterie, S. Farahi, D. Psaltis, and C. Moser, Proc. SPIE 9335, 93350I (2015).

D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, Opt. Express 23, 23845 (2015).
[Crossref]

Mahalati, R. N.

Morales-Delgado, E. E.

Moser, C.

Mosk, A. P.

Niv, E.

Papadopoulos, I.

Papadopoulos, I. N.

Piestun, R.

A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, Opt. Express 21, 12881 (2013).
[Crossref]

A. M. Caravaca Aguirre and R. Piestun, Latin America Optics and Photonics Conference Technical Digest (Optical Society of America, 2014), p. LTh4A.23.

Pinkse, P. W. H.

Plöschner, M.

M. Plöschner, T. Tyc, and T. Čižmár, Nat. Photonics 9, 529 (2015).
[Crossref]

Popoff, S. M.

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, New J. Phys. 13, 123021 (2011).
[Crossref]

Psaltis, D.

Rosen, S.

S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” arXiv: 1506.08586 (2015).

Silberberg, Y.

A. Friesem, U. Levy, and Y. Silberberg, Proc. IEEE 71, 208 (1983).
[Crossref]

S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” arXiv: 1506.08586 (2015).

Škoric, B.

Spitz, E.

E. Spitz and A. Werts, C. R. Acad. Sci. Ser. B 264, 1015 (1967), .

Stasio, N.

Tyc, T.

M. Plöschner, T. Tyc, and T. Čižmár, Nat. Photonics 9, 529 (2015).
[Crossref]

Vander Lugt, A.

A. Vander Lugt, IEEE Trans. Inf. Theory 10, 139 (1964).
[Crossref]

Vellekoop, I. M.

Werts, A.

E. Spitz and A. Werts, C. R. Acad. Sci. Ser. B 264, 1015 (1967), .

Yang, T. D.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Yariv, A.

A. Yariv, Opt. Lett. 16, 1376 (1991).
[Crossref]

A. Yariv, Appl. Phys. Lett. 28, 88 (1976).
[Crossref]

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Ziegler, D.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Yariv, Appl. Phys. Lett. 28, 88 (1976).
[Crossref]

Biomed. Opt. Express (1)

C. R. Acad. Sci. Ser. B (1)

E. Spitz and A. Werts, C. R. Acad. Sci. Ser. B 264, 1015 (1967), .

IEEE Trans. Inf. Theory (1)

A. Vander Lugt, IEEE Trans. Inf. Theory 10, 139 (1964).
[Crossref]

Nat. Commun. (1)

T. Čižmár and K. Dholakia, Nat. Commun. 3, 1027 (2012).
[Crossref]

Nat. Photonics (1)

M. Plöschner, T. Tyc, and T. Čižmár, Nat. Photonics 9, 529 (2015).
[Crossref]

New J. Phys. (1)

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, New J. Phys. 13, 123021 (2011).
[Crossref]

Opt. Express (8)

Opt. Lett. (2)

Optica (1)

Phys. Rev. Lett. (1)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Proc. IEEE (1)

A. Friesem, U. Levy, and Y. Silberberg, Proc. IEEE 71, 208 (1983).
[Crossref]

Proc. SPIE (1)

D. Loterie, S. Farahi, D. Psaltis, and C. Moser, Proc. SPIE 9335, 93350I (2015).

Other (2)

A. M. Caravaca Aguirre and R. Piestun, Latin America Optics and Photonics Conference Technical Digest (Optical Society of America, 2014), p. LTh4A.23.

S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” arXiv: 1506.08586 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Diagram of the experimental setup. BS, 50/50 beam splitter; SLM, HoloEye Pluto SLM; L1, f = 250 mm lens; L2, f = 150 mm lens; OBJ, Newport MV - 40 × objective; PD, Thorlabs PDA36A-EC photodiode; LP, linear polarizer; CAM, camera; MMF, multimode fiber. (a) Proximal side: an incoming plane wave is shaped by an SLM and relayed to the input facet of a multimode fiber via a lens (L1) and a microscope objective (OBJ). The light signals returning from the fiber are relayed back onto the SLM and focused via a lens (L2) through a pinhole. A photodiode (PD) records the resulting signal. (b) Distal side, calibration mode: an off-axis holographic system records the output fields from the fiber using a camera (CAM). (c) Distal side, imaging mode: a spot is scanned over the sample and the scattered/reflected light is collected back through the same fiber.
Fig. 2.
Fig. 2. Simulated point spread function for a pinhole size of (a) 1 Airy unit, (b) 5 Airy units, and (c) without a pinhole. The images are rendered using a logarithmic color scale.
Fig. 3.
Fig. 3. Experimental results (a), (c), (e) with a 2 mm pinhole and (b), (d), (f) with a 30 μm pinhole. (a)–(b) Depth scan of a 150 μm cover glass. (c)–(d) Lateral scan of a human epithelial cell on the surface of a cover glass. (e)–(f) 1 μm polystyrene beads on the surface of a cover glass. Each image is normalized between 0 and 1, where 0 is the minimum photodiode voltage in this image and 1 the maximum voltage.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρ = i x i · y i * .

Metrics