Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multifunctional nanoparticles based on the Nd3+/Yb3+ codoped NaYF4

Not Accessible

Your library or personal account may give you access

Abstract

Broadband near-infrared luminescence (NIR) from 720 to 950 nm, which is located in the biological window, has been successfully achieved from Nd3+/Yb3+ codoped hexagonal NaYF4 nanoparticles when excited by 980 nm diode laser. Using the fluorescence intensity ratio technique, the temperature sensing behavior of Nd3+ NIR emissions exhibits various advantages over other rare earth ion based nanothermometers. The light-induced thermal loading for the 980 nm excited NaYF4:Nd3+/Yb3+ was also investigated. The results illustrate the multifunctionality of such fluoride nanoparticles, which could simultaneously act as the luminescent nanothermometers and nanoheaters and find potential application in photothermal therapy.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Optical temperature sensing based on the near-infrared emissions from Nd3+/Yb3+ codoped CaWO4

Wei Xu, Qiutong Song, Longjiang Zheng, Zhiguo Zhang, and Wenwu Cao
Opt. Lett. 39(16) 4635-4638 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.