Abstract

Full-field optical coherence microscopy (FF-OCM) with isotropic spatial resolution of 0.5 μm (in water), at 700 nm center wavelength, is reported. A theoretical study of the FF-OCM axial response is carried out for maximizing the axial resolution of the system, considering the effect of optical dispersion. The lateral resolution is optimized by using water-immersion microscope objectives with a numerical aperture of 1.2. This ultrahigh-resolution FF-OCM system is applied to animal and human skin tissue imaging, revealing ultra-fine in-depth structures at the sub-cellular level.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wide-field, full-field optical coherence microscopy for high-axial-resolution phase and amplitude imaging

Antoine Federici, Henrique S. Gutierrez da Costa, Jonas Ogien, Audrey K. Ellerbee, and Arnaud Dubois
Appl. Opt. 54(27) 8212-8220 (2015)

Line-field confocal time-domain optical coherence tomography with dynamic focusing

Arnaud Dubois, Olivier Levecq, Hicham Azimani, Arthur Davis, Jonas Ogien, David Siret, and Anaïs Barut
Opt. Express 26(26) 33534-33542 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription