Abstract

We report on the experimental realization of a compact, fiber-based, ultrashort-pulse laser system in the 2 μm wavelength region delivering 24 fs pulse duration with 24 MW pulse peak power and 24.6 W average power. This performance level has been enabled by the favorable quadratic wavelength-dependence of the self-focusing limit, which has been experimentally verified to be at approximately 24 MW for circular polarization in a solid-core fused-silica fiber operated at a wavelength around 2 μm. The anomalous dispersion in this wavelength region allows for a simultaneous nonlinear spectral broadening and temporal pulse compression. This makes an additional compression stage redundant and facilitates a very simple and power-scalable approach. Simulations that include both the nonlinear pulse evolution and the transverse optical Kerr effect support the experimental results.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear pulse compression to 43  W GW-class few-cycle pulses at 2  μm wavelength

M. Gebhardt, C. Gaida, T. Heuermann, F. Stutzki, C. Jauregui, J. Antonio-Lopez, A. Schulzgen, R. Amezcua-Correa, J. Limpert, and A. Tünnermann
Opt. Lett. 42(20) 4179-4182 (2017)

High average power nonlinear compression to 4  GW, sub-50  fs pulses at 2  μm wavelength

M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann
Opt. Lett. 42(4) 747-750 (2017)

Compact polarization-maintaining 2.05-μm fiber laser at 1-MHz and 1-MW peak power

Heinar Hoogland and Ronald Holzwarth
Opt. Lett. 40(15) 3520-3523 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription