Abstract

Resonant periodic surfaces and films enable new functionalities with wide applicability in practical optical systems. Their material sparsity, ease of fabrication, and minimal interface count provide environmental and thermal stability and robustness in applications. Here, we report an experimental bandpass filter fashioned in a single patterned silicon layer on a quartz substrate. Its performance corresponds to bandpass filters requiring 15 traditional Si/SiO2 thin-film layers. The feasibility of sparse narrowband high-efficiency bandpass filters with extremely wide, flat, and low sidebands is thereby demonstrated. This class of devices is designed with rigorous solutions of Maxwell’s equations while engaging the physical principles of resonant waveguide gratings. An experimental filter presented exhibits a transmittance of 72%, bandwidth of 0.5nm, and low sidebands spanning 100nm. The proposed technology is integration-friendly and opens doors for further development in various disciplines and spectral regions where thin-film solutions are traditionally applied.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription