Abstract

We present a mechanical-scan-free method for volumetric imaging of biological tissue. The optical sectioning is provided by structured illumination, and the depth of the imaging plane is varied using an electrically tunable-focus lens. We characterize and evaluate the ability of this axial-scanning mechanism in structured illumination microscopy and demonstrate its ability to perform subcellular resolution imaging in oral mucosa ex vivo. The proposed mechanism can potentially convert any wide-field microscope to a 3D-imaging platform without the need for mechanical scanning of imaging optics and/or sample.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical axial scanning in confocal microscopy using an electrically tunable lens

Joey M. Jabbour, Bilal H. Malik, Cory Olsovsky, Rodrigo Cuenca, Shuna Cheng, Javier A. Jo, Yi-Shing Lisa Cheng, John M. Wright, and Kristen C. Maitland
Biomed. Opt. Express 5(2) 645-652 (2014)

In vivo volumetric fluorescence sectioning microscopy with mechanical-scan-free hybrid illumination imaging

Chen-Yen Lin, Wei-Hsin Lin, Ju-Hsuan Chien, Jui-Chang Tsai, and Yuan Luo
Biomed. Opt. Express 7(10) 3968-3978 (2016)

Volumetric HiLo microscopy employing an electrically tunable lens

Katrin Philipp, André Smolarski, Nektarios Koukourakis, Andreas Fischer, Moritz Stürmer, Ulrike Wallrabe, and Jürgen W Czarske
Opt. Express 24(13) 15029-15041 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (12251 KB)      Raw image stacks

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription