Abstract

It is known that temperature variations and acoustic noise affect ultrastable frequency dissemination along optical fiber. Active stabilization techniques are adopted to compensate for the fiber-induced phase noise. However, despite this compensation, the ultimate link performances are limited by the delay-unsuppressed noise that is related to the propagation delay of the light in the fiber. We demonstrate a post-processing approach which enables us to overcome this limit. We implement a subtraction algorithm between the optical signal delivered at the remote link end and the round-trip signal. In this way, a 6 dB improvement beyond the delay-unsuppressed noise is obtained. We confirm the prediction with experimental data obtained on a 47 km metropolitan fiber link and propose how to extend this method for frequency dissemination.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Delivery of high-stability optical and microwave frequency standards over an optical fiber network

Jun Ye, Jin-Long Peng, R. Jason Jones, Kevin W. Holman, John L. Hall, David J. Jones, Scott A. Diddams, John Kitching, Sebastien Bize, James C. Bergquist, Leo W. Hollberg, Lennart Robertsson, and Long-Sheng Ma
J. Opt. Soc. Am. B 20(7) 1459-1467 (2003)

Coherent optical frequency transfer over 50-km physical distance using a 120-km-long installed telecom fiber network

Mitsuru Musha, Feng-Lei Hong, Ken’ichi Nakagawa, and Ken-ichi Ueda
Opt. Express 16(21) 16459-16466 (2008)

Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, A. Mura, and A. Godone
Opt. Lett. 39(5) 1177-1180 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription