Abstract

We demonstrate optical trapping on a gold-coated single-mode fiber tip as excited by 980-nm laser radiation. The trapping force here is not due to common plasmonic localization, but dominated by the combined effect of thermophoresis and thermal convection. The reported scheme only requires simple thin-film deposition. More importantly, efficient broadband plasmonic absorption of the gold random nanostructures, aided by purely Gaussian excitation profile from the fiber core, has led to very low trapping-power threshold typically in hundreds of microwatts. This highly versatile fiber-based trapping scheme clearly offers many potential application possibilities in life sciences as well as engineering disciplines.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication and application of a non-contact double-tapered optical fiber tweezers

Z.L. Liu, Y.X. Liu, Y. Tang, N. Zhang, F.P. Wu, and B. Zhang
Opt. Express 25(19) 22480-22489 (2017)

Higher-order micro-fiber modes for Escherichia coli manipulation using a tapered seven-core fiber

Qiangzhou Rong, Yi Zhou, Xunli Yin, Zhihua Shao, and Xueguang Qiao
Biomed. Opt. Express 8(9) 4096-4107 (2017)

Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing

Yuxiang Liu and Miao Yu
Opt. Express 17(16) 13624-13638 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription